
Copyright © 2024 Prospect Press. All rights reserved. For use with Fundamentals of Java Programming for
Information Systems by Jeremy D. Ezell

C o m p a n i o n C h a p t e r 1

Creating Java User Interfaces with Swing

What You Will Learn in This Chapter
Users interact with contemporary information sys-
tems, as with most modern software, through a graph-
ical user interface (GUI). Console- based applications,
though still in use in many contexts, are less com-
mon. Information systems professionals who are well
rounded in their design and development skills should
have some experience in the planning, implementa-
tion, and refinement of a user interface (UI) for their
applications beyond interactions in the console. Java’s
Swing framework provides an easy- to- learn, object-
oriented class library that can help Java developers
quickly build professional- looking, business- ready
Java GUI applications that incorporate several good
“front- end” design practices. The Swing framework is
still popular and widely used for Java GUI application
development and is well worth the information sys-
tems professional’s time and effort to learn.

Specifically, this chapter will help you do the
following:

 1. Understand the similarities and differences
between the AWT, Swing, and JavaFX graphical
libraries

 2. Understand the nature of the Swing framework
and its approach to designing a GUI- based Java
application

 3. Understand how to use layout managers and Swing
components, how to specify a visual relationship
between these, and how to display them as a GUI-
based application

 4. Understand how to handle user- generated events
in a Swing GUI application, the event delegation
model, and the three techniques for event handling

 5. Understand the approach to multiform GUI develop-
ment in Swing in a compact and secondary window
approach

 6. Understand the manner in which many Swing com-
ponents store data and how to interact with that
data

Opening Scenario
After extensive work, you and your team have devel-
oped an object- oriented, class- based data model for
the mom- and- pop grocery inventory system. Using
Java’s exception- handling classes and studying best
practices in Java development efforts, your team has
prepared error- checking and error- mitigation logic to
be integrated into the client’s system. After a thorough
review, your project manager believes both you and
the team are ready for the final stage in the prototype
development, prior to a “so- far” demo to the client:
“We need to bring this application into the twenty- first
century.” The next step is to develop a GUI front end
for the application, as the console- based menu sys-
tem is a little awkward. Your project manager says,
“Since they use GUI- based applications on their

personal computers, the owners are not going to want
to see a console- based, ‘type- a- number- 1- here- type- a
- number- 2- there’ system. For this client, it just won’t
be a good fit. People want to point and click.”

Sitting down at your development machine, you
realize that you have never thought a lot about how
the software that you use every day looks and feels.
Immediately all the occasions where applications
have frustrated you come to mind— like those times
you have spent many minutes trying to find this or that
menu option or this and that feature of the application
and so on. You recall how some software has been
easy to learn and how some applications needed
a very thick manual that you now set your coffee
cup on. “We have to be mindful of ease of use as

408 • Companion Chapter 1 / Creating Java User Interfaces with Swing

well,”	you	think,	knowing	that	time	spent	carefully	
designing the look and feel of the client’s system will
be just as important as time spent writing its code
and implementing the client’s business rules. You’ve
heard about a few Java GUI libraries but have never

* Eric Raymond tours much of this earlier work at http:// www .catb .org/ ~esr/ writings/ taouu/ html/ ch02s05 .html.

needed	to	take	a	closer	look	until	now.	One	more	time,	
refill	your	coffee	mug	and	dive	into	the	research.	You	
think,	“If	we	can	get	this	right,	the	clients	will	be	very	
happy with our abilities and will want to continue this
project	far	into	the	future . . .”

CC1.1 Overview of GUI Frameworks in Java
The development and refinement of the graphical user interface (GUI) truly
helped bring computing to the masses. Forms, folders, icons, images, “physi-
cal” controls— all these real- world things were digitally analogized in the
form of the GUI interface, eliminating the need for people to learn terse and
often confusing command- line syntax. This opened personal computing up to
the broad population and laid the groundwork for the web, mobile, artificial
intelligence (AI), and “metaverse” platforms so popular today. Companies
like Microsoft in the 1980s and later Apple, among others, pioneered early
work in adding a GUI layer over top of their operating systems for personal
computing systems. This is not to say that earlier computing platforms (both
consumer and business focused) did not have a visual user interface. Compa-
nies like Xerox and Amiga had earlier (than Apple and Microsoft) introduced
point- and- click quasi- graphical systems, but their use was limited and often found only in experimental and lab
usages.* Personal computer operating systems interfaces ranged from simple console- like command interfaces
(like MS- DOS) to text- /menu- based systems that allowed free movement between commands. The move
to GUI systems was often rapid and (again, in the case of Microsoft and Apple) contentious, but innovation
along with the more natural and effective use of computing that comes with a GUI drove this computing
interface approach to dominance.

Today, computer users leverage the user interface that works best for them and the tasks they want to
accomplish. In business, you will find a mix of both console- based applications and GUI- driven software.
Often, console applications are running in a GUI- based operating system (i.e., Windows PowerShell for issu-
ing advanced OS commands within Windows). But the GUI design philosophy reigns supreme, both in
desktop applications and in web, mobile, and tablet software implementations. In information systems (IS)
scenarios, software interactions occur through form- based data entry, tabular reporting, tabbed organization
of information, visual display of analyzed data through charting and other visualization types, and so on. As
information systems professionals, you will encounter these and other GUI scenarios in your daily planning
and implementation work.

Directly related to the consideration of a GUI implemented for a system are questions such as the follow-
ing: Is this data entry method effective? Should this screen be redesigned? How can we reduce the amount
of time it takes to accomplish a task? Is the UI intuitive, easy, and efficient? Researchers in IS tell us that two
primary reasons (among many) why users choose to either adopt and use or reject an IS are due to their percep-
tion of self- benefit (“Will using this system help me in my job?”) and ease of use (“Is this system easy to use,
easy to learn, and better than the ‘old’ way?”). For the IS professional engaged in systems analysis and design,
potentially working on the future “to- be” system, these are big hurdles to overcome. Part of your planning
and design work should be laser- focused on these two questions when considering a redesign of an existing
system or when planning for a new one.

Many contemporary, popular programming languages include a framework for developing a GUI applica-
tion. This includes Java, which has two built into the language and a third that was recently moved out of
the official JDK by Oracle to an open- source community. Prior chapters have prepared you with a solid basis

Figure CC1.1. Wireframe Diagrams Are
Often Used during the User Interface
Design Process

Source: “Wireframes” by Christian_Campos is
licensed under CC BY 2.0, https:// www .flickr
.com/ photos/ 23438340 @N02/ 3883508604.

CC1.1 Overview of GUI Frameworks in Java • 409

for understanding Java’s object- oriented (OO) nature. Th is chapter covers the usage of Swing, a popular
object- oriented Java GUI framework. First, it will be helpful to discuss the GUI frameworks available in Java.
Chapter 11 will walk you through the JavaFX framework if you are interested (or if your instructor covers
that framework instead).

Abstract Window Toolkit (AWT): Th is was the earliest offi cial framework for creating a graphical, win-
dowed user interface for a Java program. AWT was innovative and made GUI development easily available
to Java developers. Originally developed by Sun Microsystems (the originators of the Java language), it was
popular in its time, but it had several drawbacks:

• Lack of portability: AWT GUI elements (buttons, scroll bars, check boxes, etc.) were not part of AWT
themselves. Rather, the framework required the use of whatever native controls were available through
the operating system. If you wanted to move your AWT Java application to another OS, some rewriting
of code was required to use that OS’s controls. Th is made regular Java programs much more portable than
AWT- based Java programs. Th is tie to the underlying OS limited the controls that could be used. If you
wanted a new control, you had to code it from scratch.

• Tightly integrated logic and UI: Th ere was no “separation of concerns,” a popular contemporary appli-
cation design paradigm where the logic of an application and its user interface are developed separately.
With AWT, you were forced to write logic and UI together with no alternative, decreasing modularity
and hindering ease of maintenance by multiple developers.

• Resource ineffi ciency: Th e objects created by using the AWT framework were bulky (back when comput-
ing resources were more limited), and the behavior of AWT programs
could be buggy/inconsistent.

Swing: Developed by Sun Microsystems through a partnership with
Netscape in the 1990s, the Swing framework resolved many of the AWT draw-
backs and became a popular successor. Swing was built upon the AWT frame-
work and shares some compatibility with it. Swing is still in broad use today.
Many of its benefi ts include the following:

• Platform independence: Swing controls are part of the framework itself,
so the developer is not forced to use those built into the OS. Swing
applications use AWT to create a window, and then Swing handles the
creating/display of controls and interactions with the OS generated by
user clicks and activity. Th is allows for easy portability of a Swing Java
application from one OS to another, as Swing inter-
prets the activity generated and decides how to send
that to the OS, instead of having the developer make
those OS calls directly. Th ink of it like a mini– virtual
machine (VM) for GUI- based Java applications!

• Since Swing controls were part of the framework
itself, this gave developers a much higher variety of
controls to work with other than just those natively
included on the OS within which the application
was running (see fi gure CC1.3 for an example of this
variety).

• Since Swing handles its own controls, it has a much
richer set of them than any one OS. Due to Swing’s
portability, the user experience is consistent across
operating systems: a button in a Swing app running on
Windows will look and act (mostly) the same as one
on Mac OS X, Linux, and so on.

Figure CC1.2. Example of an AWT
Java Application in the Linux OS

Source: “AWT_at_Linux.jpg” by Sven is public
domain, https:// commons .wikimedia .org/
wiki/ File: AWT _at _Linux .png.

Figure CC1.3. Example of a Java Swing UI Application
Source: “The Swing (Graphics User Interface) Demo of the GNU
Classpath Project” by Audrius Meskauskas is licensed as free
software under the GNU General Public License, https:// commons
.wikimedia .org/ wiki/ File: GC _SwingDemo .PNG.

410 • Companion Chapter 1 / Creating Java User Interfaces with Swing

• Swing allows for a “model- view- controller” approach to GUI app development, which adheres to the
“separation of concerns” design paradigm. The user interface code can be separate from the logic that
executes when the UI is used. This allows easier maintenance: one or more developers can work on the
UI separately and in parallel with other developers who might be working on the application’s logic.

• Swing is still relatively popular today. Developers like its reliability (far less buggy!), consistency, and ease
with which development can occur.

JavaFX: Developed originally by Sun Microsystems and expanded upon by Oracle, JavaFX was intended
as the natural successor to Swing (and still is to some extent). In 2018, Oracle moved JavaFX from “in- house”
development and out under the umbrella of OpenJDK (open- source version of Java), into the OpenJFX proj-
ect. JavaFX is no longer included as a native part of the newest Java JDK releases, though it is still included
in JDK 8.*,† This adds some extra steps needed to run a JavaFX project in your IDE of choice (see appendix A
for JavaFX installation instructions), but this allows the framework to thrive under speedy community devel-
opment. Some of the advantages that the JavaFX framework adds above and beyond Swing are the following:

• Web- ready GUI framework: JavaFX was intended to be compatible with the web. Web content can be
embedded within a JavaFX program, and a JavaFX Program can be deployed as a website itself.

• JavaFX supports multitouch scenarios: Multitouch, along with a web- compatible nature, makes JavaFX
a great development choice for desktop, web, mobile, or tablet- based use cases. Like Swing, JavaFX appli-
cations are portable across operating systems, enabling a consistent user experience across both platforms
and devices.

• 2D and 3D graphics and animations, rich text, advanced charting, and multimedia support: JavaFX
allows for a much richer user experience than Swing. Visual effects such as rotation, opacity, blurring,
shadows, and more can be defined for almost any control on a JavaFX form. Paired with animations,
developers can create fairly rich UI “front ends” for their information systems. JavaFX has visually appeal-
ing charting ability built in, giving developers quick access to business- ready visualizations.

• High- degree of customizability and continued MVC support: Almost every aspect of a JavaFX pro-
gram can be altered aesthetically through Cascading Style Sheet (CSS) styling. Similar to Swing, JavaFX
continues support for the MVC design paradigm, allowing the UI and the logic to be built separately.

Swing or JavaFX? Oracle and the development community have for some time intended for JavaFX to be
the natural successor to Swing, though there has not been an aggressive push for this to happen. One positive
aspect of the broader Java development community is the flexibility of the language provided by its variety of
frameworks and technologies. For the Java developer interested in GUI application development, there is room
for both Swing and JavaFX in your “mental toolbox.” Swing is still
widely used in the Java development community and shares a lot of
syntax similarities with JavaFX’s framework. The Swing framework
will be overviewed in this chapter. The basics, nature, and customiz-
ability of Swing (as well as JavaFX) are quickly learned, enhancing
your skills as a developer working in the Java language. By learning
how to work with a popular Java GUI framework, you become a
more well- rounded developer as well, gaining experience in both
the “front end” of development (GUI, user experience, etc.) and the
“back end,” consisting of the logic that represents the business rules
and required application functionality. Additionally, knowledge of
a GUI framework like Swing will help the developer who finds
themselves involved in a project where other GUI frameworks like
JavaFX, for example, might be used. The similarities between the two
will help you learn to transition from one to the other.

* https:// wiki .openjdk .java .net/ display/ OpenJFX/ Main.
† https:// openjfx .io/.

Figure CC1.4.	Example	of	a	JavaFX	Form	with	
Charting and Other Controls

CC1.2 Building a Basic Swing GUI Java Application • 411

SUMMARY POINTS

* https:// docs .oracle .com/ javase/ tutorial/ uiswing/ start/ about .html.
† https:// docs .oracle .com/ javase/ 7/ docs/ api/ javax/ swing/ package -summary .html.

• The graphical user interface is the dominant
method by which users interact with software
and computing- based systems.

• Information systems professionals consider
several factors when designing software and the
interface	through	which	users	will	interact	with	it,	
focusing	on	issues	like	self-	efficacy	and	ease	of	
use.

• The Abstract Window Toolkit (AWT) was
the earliest GUI framework used in the Java
language for creating a visual user interface for
Java applications. The framework was heavily

dependent on the UI resources of the operating
system the Java application was targeted for.

•	 The	Swing	framework,	next	offered	as	a	
GUI	library	for	Java,	improved	upon	AWT’s	
weaknesses—	namely,	through	operating	system	
independence and internally implemented UI
controls.

•	 The	JavaFX	framework,	now	outsourced	to	
the	OpenJFX	group	with	Oracle	consultation,	
modernizes both the GUI controls available for
Java	applications	and	their	functionality	in	web/
internet contexts.

QUICK PROBLEMS

 1. Think: Think about the various computing- based
devices you interact with on a daily basis. What are
some of the things that are common across all of
them	in	terms	of	the	GUI	/	user	interface?	Can	all	
tasks	(i.e.,	spreadsheet	editing)	work	effectively	on	
device	screens	of	all	sizes	(i.e.,	your	smartphone)?

 2. Think:	What	is	a	benefit	to	having	a	GUI	frame-
work	in	Java	be	“operating	system	independent,”	
and	how	does	this	mirror	the	benefits	of	the	Java	
language itself?

 3. Think: Can you perform wireframing and user
interface	planning	for	non-	GUI	applications,	like	a	
console/terminal	application?

CC1.2 Building a Basic Swing GUI Java Application
Oracle describes* the Swing framework as an API (application programming interface) that is itself part of
the Java Foundation Classes. Like the base Java language itself, the Swing is intended to function the same
on every technology and to have the same look and feel.† Swing is an object- oriented GUI framework, mean-
ing that the OO syntax you have learned across many chapters in this textbook will pay off here. The Swing
framework may be new to you, but you are diving in with a knowledge of how classes, constructors, instance
objects, data fields, getters, setters, and other OO concepts work. This knowledge will help you understand
the sequence and order of Swing syntax quickly, since all of these syntax concepts are used in this framework.
Your OO knowledge will keep you “grounded.” There are many classes that make up the Swing framework, and
each class has many aspects. The framework itself is huge and could not possibly be covered all in one chapter.

Understanding the Swing framework: The Swing framework was created with the idea of allowing devel-
opers to create a Java GUI- based application that would look and feel the same when executed across any
platform that runs Java. Swing is considered the successor to the Abstract Window Toolkit (AWT). Swing
is considered to be more “lightweight” than AWT and more resource efficient with a more convenient OO
syntax and a more universal look and feel across operating systems/platforms to the furthest extent possible.
Far less work is needed by the developer to ensure uniformity across technology platforms with Swing thanks
to built- in UI controls.

As discussed in chapter 9, the Java API itself is hierarchical in nature (“parent” and “child” classes, inheri-
tance of public members of parent classes, etc.). Swing’s class library is similarly hierarchical, which allows
for efficient extension of classes into subclasses with specific functionality. Figure CC1.5 displays part (but

412 • Companion Chapter 1 / Creating Java User Interfaces with Swing

not all!) of the Swing framework’s hierarchically related
classes as discussed in the official Oracle documentation.*

Since Swing is a GUI framework, it manages the dis-
play of the visual equivalents of these classes (the controls
you can click on and interact with in the application) in
a hierarchical manner as well. Swing uses a containment
hierarchy to manage the different display layers for any
GUI window. A GUI window in Swing could be a tra-
ditional frame, a dialogue window, or (less common today)
an applet for display on a website. Each of these would
have its own containment hierarchy where GUI compo-
nents are stored, arranged, and displayed. Each contain-
ment hierarchy starts with a top- level container, which
is the “highest” in the hierarchy, and everything else will
“nest” inside of it. For example, if your Swing application
has a single traditional GUI window and two dialogue
windows (we will explore these later), then there would
be three separate containment hierarchies in your applica-
tion (think: three “family trees” of GUI objects that are
displayed).

To understand the basic parts of a Swing application,
consider the following example. In a Swing GUI form are
placed two JLabel components, two JTextField com-
ponents, a JButton, and a JTextArea to display output.
Notice the class names are fairly self- descriptive. Assume
this application’s purpose is to have the user type in a first
and second name, and the application will concatenate
the two names together and display the full name in the JTextArea.
Figure CC1.6 shows a rough wireframe sketch of this simple application
and its possible look and feel.

The containment hierarchy of this Swing application would look some-
thing like figure CC1.7. Notice the multiple layers, some of which are
displayed visually and some of which are not.

Briefly, each of these layers of our Swing application works as follows:
• JFrame: In a Swing application, each window or display contains

a top- level container that serves as the “root” or beginning of the
containment hierarchy. In our simple application, our traditional
main window will have as its top- level container a JFrame object.
In a dialogue window, a JDialog object would serve as the top- level
container. Every other layer is nested within this root layer, thus creating the hierarchy. The JFrame layer
is not visually displayed.†

• JRootPane: A JFrame instance object will contain a JRootPane as a data field. The JFrame uses the
JRootPane to contain all the pane layers beneath it. The JRootPane is not visually displayed, and devel-
opers rarely interact with it.‡

• JLayeredPane: A data field of the JRootPane class. Developers can use the JLayeredPane to provide a
depth arrangement to components (think: third dimension, components overlapping one another, etc.) in

* https:// docs .oracle .com/ javase/ 7/ docs/ api/ javax/ swing/ package -summary .html.
† https:// docs .oracle .com/ javase/ 7/ docs/ api/ javax/ swing/ JFrame .html.
‡ https:// docs .oracle .com/ javase/ 7/ docs/ api/ javax/ swing/ JRootPane .html.

Figure CC1.5. Class Inheritance and Data Field Relationships
for Selected Swing Classes

Figure CC1.6. Wireframe Diagram of
Name Display Application

CC1.2 Building a Basic Swing GUI Java Application • 413

a convenient way. Developers rarely need to interact with
the JLayeredPane object. The JLayeredPane object will
manage the two major objects that are displayed: the menu
bar (if the developer adds one) and the content pane.*

• JMenuBar and Container: The two major layers that are
visually displayed will be the Container data field of
the JLayeredPane object called contentPane and the
optional JMenuBar data field of JLayeredPane called
menuBar. The contentPane will visually take up the full
area of the displayed GUI window unless the developer
adds a JMenuBar object to the display, which will then
display along the top edge of the GUI window auto-
matically, resizing the contentPane to make room. The
Oracle documentation for the JRootPane class has a great
discussion on this, and we will see this demonstrated later
in this chapter.

• The glassPane Component data field: Finally, the JRootPane object has a
Component data field called glassPane. Developers will rarely work with this
layer. The glassPane can allow the developer to draw over the GUI and over
individual components, and it can intercept actions/events and prevent them from
reaching components in the application. By default, the glassPane is not visible.†

Understanding the basic Swing application: At this point, you can begin working
with the classes in the Swing API to build your first Swing GUI application. Since
Swing is still (as of the time of this writing) a native part of the Java JDK, there is noth-
ing to install or configure in order for you to begin using it. In your IDE of choice (we will develop in Apache
NetBeans in this chapter), create a new Java project, and name it NameConcatenation. Once your project
is created, create a new Java main() class file in the default package, and give it the name MainApp.java to
indicate it is the starting point for the application and will (eventually) create and display the Swing form.
Next, add to the default package a Java class (nonmain class), and call it MainForm.java. Once done, your
project’s file structure should look similar to that in figure CC1.8. Whether you are using NetBeans, Eclipse,
or any other software, the two .java files should appear in the same package folder.

The design philosophy here is simple and uses OO techniques as cleanly as possible: MainApp will create an
instance object of the MainForm class, which itself uses the Java Swing classes to display a form with controls
and perform our name concatenation and display task. You certainly could place the code that we will even-
tually write in MainForm instead into MainApp (and many tutorials on the web do this very thing), but our
approach, with a clean separation, will keep things simple. The app launches the form, and the form allows
the user to carry out their task.

Focus first on MainForm.java. Add the following imports, which will define the Swing classes needed:

Code Snippet CC1.1
import java.awt.*; // Import All
import java.awt.event.*; // Import All
import javax.swing.*; // Import All

import java.util.*; // Import All

Since Swing expands and builds upon the AWT, some of the imports must come from that package and the
rest from the Swing package.

* https:// docs .oracle .com/ javase/ 7/ docs/ api/ javax/ swing/ JLayeredPane .html.
† https:// docs .oracle .com/ javase/ tutorial/ uiswing/ components/ rootpane .html #glasspane.

Figure CC1.7.	Containment	Hierarchy	for	a	Simple	
JFrame Swing Application

Figure CC1.8.	Beginning	
Contents of the
NameConcatenation Project
in	Apache	NetBeans

414 • Companion Chapter 1 / Creating Java User Interfaces with Swing

Working with Swing components: The components in a Swing application are displayed visually in the GUI,
and these are what the user will interact with. For IS professionals, the development effort starts before the
first line of code is written in the determination and clarification of requirements for the application. The look
and feel, effectiveness, efficiency, and ease of use of a system as a whole must be hammered out prior to writing
the first line of code. Part of this planning involves talking to stakeholders, clients, potential users, and others
who might use or be impacted by the software that is planned to determine how it will be used and what it
should do. Our wireframe diagram of the application in figure CC1.6 earlier is a key part of this planning
process. Both the developer (and their team if a member of one) and the client will and should have input on
wireframing of various parts of the GUI during the planning process.

For this simple application, there are two main functionality requirements:
• The user can enter their first and last names.
• The user can click a button that will cause the two names to be concatenated and displayed in the output

area in the application window.
Pretty simple! Wireframing and initially elicited system requirements are crucial steps in the systems develop-
ment process, and getting the client(s) and/or stakeholders involved in this process can help spur discussion
and clarification of “fuzzy” requirements. Often this due diligence can yield more system features that may
have been missed if the planning process had been neglected.

Table CC1.1 displays names and examples of many of the more commonly used Swing components. From
the wireframe design in figure CC1.6, you have a good idea of what types of controls will be needed for the
application. Table CC1.1 can provide guidance if an application’s functionality needs expansion via additional
controls. You will see examples of several of these table CC1.1 components later on in this chapter. Many
characteristics of each component can be changed; for example, images can be added and displayed instead of
text within a JButton or JLabel.

Manually sizing and positioning components: You will build the form in two ways. First, both the position
and the size of the Swing components on the form will need to be specified. This will give you an idea of how
to exert precise control over the positioning of your components if you need it. After this, the use of several
JPanel components to group visual GUI elements and Swing layout managers to automatically configure the
form’s layout will be explored.

Table CC1.1. Some Common Java Swing Components and Example Displays of Each

Swing component class name
Visual example of

component

JButton

JLabel

JComboBox

JList<E> (can be generically typed to
visually display many class instance
object types)

JTextArea

Swing component class name
Visual example of

component

JTextField and JPasswordField

JSlider

JProgressBar

JRadioButton (add these to a
ButtonGroup to make them aware of
each other— only one can be clicked)

JCheckBox

JMenuBar
JMenu
JMenuItem

CC1.2 Building a Basic Swing GUI Java Application • 415

From figure CC1.6, it appears the application needs two JLabel components, two JTextField compo-
nents for the user to type into, a JButton component to (eventually) trigger the concatenation action, and a
JTextArea to display output. Since the position and sizes of the components are being manually specified,
the steps to display the GUI are relatively straightforward:

• Create and set the characteristics of components.
• Specify the position and size of the components.
• Create the JFrame, add the components to it, and set its characteristics.
• Instantiate our Java Swing form from the application.

Keep in mind that the application MainApp.java will instantiate the Java Swing form class MainForm, which
will cause it to display. First, create the Swing components by adding them to MainForm as class- level data
fields. The changes are in bold (see chapter 8 for more details on class- level data fields):

Code Snippet CC1.2
package com.javaforis.nameconcatenation;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

import java.util.*;

// Class declaration
public class MainForm {

 // Class- level declarations of
 // components
 JFrame mainFrame;
 JLabel lblFirstName;
 JLabel lblSecondName;
 JTextField txtFirstName;
 JTextField txtSecondName;
 JButton btnConcatName;
 JTextArea txtaOutput;

}

By adding Swing components at the class level, you will ensure that your code has access to them from any-
where in the MainForm class. If MainApp will instantiate MainForm, you will need a constructor that will handle
the initialization of MainForm and cause it to display. The characteristics of the form’s Swing components can
be specified, the components positioned, and the JFrame set up from the constructor as well.

Add a zero- argument constructor for MainForm, and initialize the components in the following way (remem-
ber that constructors are placed inside the class declaration and usually after any class- level data fields):

Code Snippet CC1.3
// Zero- Arg Constructor for MainForm
public MainForm()
{
 // Create the JFrame
 mainFrame = new JFrame();

 // Create the components
 lblFirstName = new JLabel("First Name:");
 lblSecondName = new JLabel("Second Name:");
 txtFirstName = new JTextField();
 txtSecondName = new JTextField();

416 • Companion Chapter 1 / Creating Java User Interfaces with Swing

 btnConcatName = new JButton("Submit - >");
 txtaOutput = new JTextArea();

}

Notice that each Java Swing component is an instance object of a class. Swing is fully OO! Each component
class is also part of the class hierarchy sampled in figure CC1.5. There are instance methods that can be invoked
on each Swing component to interact with it and set its characteristics. Since all components inherit from the
JComponent Swing class, many of the methods available for one component may be available for others. For
example, several of the methods described for a JTextField instance object will also work with JLabel,
JButton, and so on. Some of the more commonly invoked methods are as follows:

• JTextField: Inherits methods and data fields from the JTextComponent class, which inherits from
JComponent.
◦ .getText() and .setText(String str): The reference to a JTextField instance object does not

contain its text, but the text that is displayed in this component is stored in a data field of the JTextField
instance object. As shown in chapter 8, many classes include accessor (“getter”) and mutator (“setter”)
methods to access the values in an instance object’s data fields. JTextField instance objects have a
“text” data field, and the getter/setter methods can interact with it to retrieve or set what is visually
displayed in the component.

◦ .setColumns(int colCount): You can set the width of the JTextField by specifying how many
character columns it should display.

◦ .setEditable(boolean bln): Toggle the editability of the JTextField object by using a boolean
true or false value. Useful when you need to display a value in the JTextField but prevent the user
from changing it.

◦ .setHorizontalAlignment(int alignValue): You can set the justification of the text typed or dis-
played in a JTextField by invoking this method and providing it an int alignment value. The alignment
values are enumerated types built into the JTextField class (a value represents an int number). These
are the following:
▪ JTextField.LEFT, JTextField.RIGHT, JTextField.CENTER, JTextField.LEADING,
JTextField.TRAILING

◦ .setForeground(Color clr): Allows you to change the font color of the text displayed in a JTextfield
easily. Provide the color by using the enumerated types built into the Color class (java.awt.Color).
For example,
▪ txtSomeTextField.setForeground(Color.red);

◦ .setFont(Font ft): Allows you to change the Font type, the style, and the size of the text in a
JTextField. You will create a new instance object of the Font class (java.awt.Font) and provide its
constructor with three values, passing the reference to the Font object to the .setFont() method. For
example,
▪ txtSomeTextField
.setFont(new Font("Consolas",Font.BOLD, 12));

Note that the font styles are enumerated types within the Font class.
◦ .setToolTipText(String str): Allows you to display a small pop- up note that can instruct the user

as to what the component does and how to use it. For example,
txtSomeTextField.setToolTipText("Type in this JTextField");

This would display the following in the GUI:

Figure CC1.9.	ToolTip	Text	Box	for	a	JTextField in Swing

CC1.2 Building a Basic Swing GUI Java Application • 417

• JLabel: Inherits methods and data fi elds from the JComponent class.
◦ .getText() and .setText(String str): Th ese work the same way as they do for JTextField and

other text- based components.
◦ .setVerticalAlignment(int alignValue): Similar to .setHorizonalAlignment(), this method

allows you to align the text in the JLabel according to a vertical alignment. It uses the enumerated types
in SwingConstants for the int alignValue required by the method’s parameter:
▪ SwingConstants.TOP, SwingConstants.CENTER, SwingConstants.BOTTOM

◦ .setIcon(): In addition to having a text label that you can change using .setText(), the .setIcon()
method allows you to use an image as the icon for a JLabel as well. Th is is an easy and indirect way of
displaying an image in your Swing GUI application. Th is is a multistep process:
▪ First, copy an image fi le into your Java project through NetBeans or another IDE of your choice. For

example, an “images” folder has been added to my example project (not part of NameConcatenation),
and the image of a pet has been copied into it like so:

Figure CC1.10.	Location	of	“Images”	Folder	in	NetBeans	Java	Swing	Project
▪ Second, create an ImageIcon instance object, and use the relative (i.e., local in project) fi le path to

the desired image in the constructor:
ImageIcon imgIcon = new ImageIcon("images/puppy.png");

▪ Finally, invoke the .setIcon() method on the appropriate JLabel to set the ImageIcon fi le as the
JLabel icon. Later when the form displays, it will look like the below:

lblTestLabel.setIcon(imgIcon);

Figure CC1.11. Setting an Image in a JLabel Control in Java Swing
Th e same method can be invoked on other components like JButton to set icons along with their

displayed text:

Figure CC1.12. Icon Used in JButton Control in Java Swing
 You are now ready to manually set the position and sizes of the form’s controls. Keep in mind that later usage

of layout managers and JPanel components will be examined to “automate” this process. Th e .setBounds()
method can be used for manual sizing and placement of components in the GUI. One overload version of the
.setBounds() method looks like this:
.setBounds(int x, int y, int width, int height);

Th e x and y values are the number of pixels to the right (x) and the number of pixels down from the top (y)
that the control will be placed at. Th is is relative to the component’s parent container. Since you will be adding
these to the JFrame, the x and y are relative to the top- left corner of the JFrame itself (at x = 0 and y = 0). Th e
.setBounds() method is invoked for each component.

After the initializations in the constructor, add the following code:

418 • Companion Chapter 1 / Creating Java User Interfaces with Swing

Code Snippet CC1.4
 // Size the JFrame window
 mainFrame.setSize(300, 350);

 // Position and Size the Swing Components
 lblFirstName.setBounds(10, 10, 100, 20);
 txtFirstName.setBounds(150, 10, 100, 20);
 lblSecondName.setBounds(10, 40, 100, 20);
 txtSecondName.setBounds(150, 40, 100, 20);
 btnConcatName.setBounds(150, 70, 100, 20);
 txtaOutput.setBounds(10, 100, 250, 200);

 // Add components to the JFrame window
 mainFrame.add(lblFirstName);
 mainFrame.add(txtFirstName);
 mainFrame.add(lblSecondName);
 mainFrame.add(txtSecondName);
 mainFrame.add(btnConcatName);
 mainFrame.add(txtaOutput);

 // Cause text in the JtextArea to wrap
 txtaOutput.setLineWrap(true);

 // Specify what should happen when the main window is closed.
 mainFrame.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);
 // Specify that we are manually laying out components.
 mainFrame.setLayout(null);
 // Indicate that the JFrame should display itself.
 mainFrame.setVisible(true);

A summary of the code has been added:
• First, the method .setSize() is invoked upon the JFrame instance object to indicate how large the GUI

window should be when it eventually is displayed.
• Next, the .setBounds() method is invoked for each component to indicate where on the JFrame it should

display and its size. This can be tedious, for sure, but you can use .setBounds() if you need really precise
control over the positioning and sizing of components.

• After this, the components have been added to the JFrame so that they are “nested” inside its contentPane
(discussed earlier in the chapter).

• The JTextArea has been set to wrap any text that is too long for one line.
• Finally, the Swing application is set so that it will close when the main JFrame window is also closed.

The form’s components are arranged by changing the layout data field of the JFrame to null. Lastly, the
JFrame is commanded to make itself visible.

The MainForm.java class should be ready to run. As a last step, over in the main method of MainApp.java,
create an instance object of the MainForm class, and invoke its constructor:

Full Program CC1.1
package com.javaforis.nameconcatenation;

public class MainApp {

 public static void main(String[] args) {

 // Create and Display a MainForm window.
 MainForm mainAppForm = new MainForm();
 }
}

CC1.2 Building a Basic Swing GUI Java Application • 419

When the project is run, the Swing GUI window should display as seen in
figure CC1.13:

Using layout managers and JPanel: For a very small application like
NameConcatenation, manually setting the positions and sizes of controls is not
too difficult. As our applications grow and become more complex, this could
become excessively tedious. It is easier to allow Swing’s layout managers to arrange
the components in a more automatic fashion. Oracle’s documentation does a
thorough job of introducing layout managers and discussing each in detail, but
discussing a few in detail will be helpful.*

Using the JPanel class: The JPanel class is a great general- use container for
other Swing components.† A JPanel itself can use a layout manager for the
components nested inside of it, or the JPanel itself could be placed with other
components inside another container that uses a layout manager. Think of a
JPanel like a plate of food: you can place certain items on the plate, and then
you can move the plate itself to another location. JPanel containers work just
like this. If you need to and are clever with the way you design your forms, you
can create several JPanel containers to group components together and arrange them using layout managers.
Alter the code in the MainForm constructor to add a JPanel, place all components within, and add the JPanel
to the JFrame (changes in bold):

Code Snippet CC1.5
// Zero- Arg Constructor for MainForm
public MainForm()
{
 // Create a JPanel
 JPanel mainPanel = new JPanel();
 mainPanel.setBorder(BorderFactory.createTitledBorder("Name Concatenation"));

 // Create the JFrame
 mainFrame = new JFrame();

 // Create the components
 lblFirstName = new JLabel("First Name:");
 lblSecondName = new JLabel("Second Name:");
 txtFirstName = new JTextField();
 txtSecondName = new JTextField();
 btnConcatName = new JButton("Submit - >");
 txtaOutput = new JTextArea();

 // Size the JFrame window
 mainFrame.setSize(300, 350);

 // Specify the Widths of text- components
 txtFirstName.setColumns(20);
 txtSecondName.setColumns(20);

 txtaOutput.setColumns(20);
 txtaOutput.setRows(10);

 // Add components to the JPanel container
 mainPanel.add(lblFirstName);

* https:// docs .oracle .com/ javase/ tutorial/ uiswing/ layout/ visual .html.
† https:// docs .oracle .com/ javase/ tutorial/ uiswing/ components/ panel .html.

Figure CC1.13.
NameConcatenation GUI
Form Displayed

420 • Companion Chapter 1 / Creating Java User Interfaces with Swing

 mainPanel.add(txtFirstName);
 mainPanel.add(lblSecondName);
 mainPanel.add(txtSecondName);
 mainPanel.add(btnConcatName);
 mainPanel.add(txtaOutput);

 // Add the JPanel to the JFrame
 mainFrame.add(mainPanel);

 // Cause text in the JTextArea to wrap
 txtaOutput.setLineWrap(true);

 // Specify what should happen when the main window is closed.
 mainFrame.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);
 // Indicate that the JFrame should display itself.
 mainFrame.setVisible(true);

}

Notice that in addition to the changes indicated in bold, the null value for the JFrame has been removed. The
JPanel now has a border specified using the .setBorder() method. In summary, this code does the following:

• Creates the individual components, JFrame, and JPanel
• Adds the components to the JPanel
• Adds the JPanel to JFrame
• Commands the JFrame to display

When MainApp.java is run, the GUI will display as shown in figure CC1.14. Figure CC1.14 also demonstrates
the effect of resizing the form with the mouse:

Figure CC1.14. NameConcatenation GUI Using a JPanel and Display after a Window Resize
Some of the various layout managers can be summarized as follows:
• FlowLayout: Notice that the components in Figure CC1.14’s GUI rearranged themselves to fit the size

of the window. This is the default behavior of JPanel, which is to use the FlowLayout layout manager.
FlowLayout will arrange all components in a single row, moving down to the next row when there is
no more room to display a component. To use FlowLayout, allow the default behavior of your JPanel
container with no extra changes needed.

CC1.2 Building a Basic Swing GUI Java Application • 421

• BorderLayout: The BorderLayout layout manager allows you to arrange components or containers on a
form directionally. For example, you can modify the NameConcatenation example in the following way
(only the changed code is shown):

Code Snippet CC1.6
 mainPanel.setLayout(new BorderLayout());

 // . . .

 // Add components to the JPanel container
 mainPanel.add(lblFirstName, BorderLayout.NORTH);
 mainPanel.add(txtFirstName, BorderLayout.WEST);
 mainPanel.add(lblSecondName, BorderLayout.CENTER);
 mainPanel.add(txtSecondName, BorderLayout.EAST);
 mainPanel.add(btnConcatName, BorderLayout.SOUTH);
 mainPanel.add(txtaOutput, BorderLayout.SOUTH);

This will yield the following GUI (shown after a little resizing):

Figure CC1.15. Changes to the Swing Form after Specifying a BorderLayout in a JPanel
To understand the BorderLayout behavior better, the following uses JButton components to demonstrate

the border directionality of this layout manager (the code is nearly identical to that shown above, just using
JButton objects instead of the intended NameConcatenation components):

Figure CC1.16. Visually Demonstrating BorderLayout in JPanel Using JButton Controls
A few rules to keep in mind when using the BorderLayout layout manager:
• Only one component per directional “area” is allowed. If you place multiple controls, the last one placed will

sit “stacked” over any others (you can see this in figure CC1.15: the JTextArea is covering the JButton).
• Each control or container placed in an area will be expanded in size to fill the space for that area. That is

why both of the JTextField controls look so large in figure CC1.15 as well as the expanded buttons in
figure CC1.16.

• CardLayout: The CardLayout layout manager is handy when you need the ability to quickly swap out
one set of controls for another on the same form. It operates as if you were holding playing cards in your
hands: You remove one card and pick up the next, swapping one for the other. The Oracle documentation
has a great tutorial for using the CardLayout layout manager.*

* https:// docs .oracle .com/ javase/ tutorial/ uiswing/ layout/ card .html.

422 • Companion Chapter 1 / Creating Java User Interfaces with Swing

• BoxLayout: The BoxLayout manager will arrange components or containers in either a single row or a
single column, with no wrapping to another line/column. Consider the following code (note the alterna-
tive directionality commented out), and see figure CC1.17 for how this will impact the arrangement of
the form’s components:

Code Snippet CC1.7
 mainPanel.setLayout(
new BoxLayout(mainPanel, BoxLayout.X_AXIS));
 //mainPanel.setLayout(
new BoxLayout(mainPanel, BoxLayout.Y_AXIS));
 // . . .

 // Add them to the JPanel container
 mainPanel.add(lblFirstName);
 mainPanel.add(txtFirstName);
 mainPanel.add(lblSecondName);
 mainPanel.add(txtSecondName);
 mainPanel.add(btnConcatName);
 mainPanel.add(txtaOutput);

Figure CC1.17.	The	Impact	of	BoxLayout	Settings	on	the	NameConcatenation Components

• GridLayout: The GridLayout layout manager allows you to specify a number of columns and rows, and
the components will be arranged in a grid- like fashion. The first added component will be placed in the
first column, first row; the next in the same row, second column; and so on. For example, consider the fol-
lowing code:

Code Snippet CC1.8
 mainPanel.setLayout(new GridLayout(4,2));
 // . . .
 // Add them to the JPanel container
 mainPanel.add(lblFirstName);
 mainPanel.add(txtFirstName);
 mainPanel.add(lblSecondName);
 mainPanel.add(txtSecondName);
 mainPanel.add(btnConcatName);
 mainPanel.add(txtaOutput);

This would yield a GUI arrangement of components as follows (the window was resized to show the com-
ponents better):

CC1.2 Building a Basic Swing GUI Java Application • 423

Figure CC1.18. Swing Controls Arranged Using a GridLayout Layout Manager

• GridBagLayout: Similar to GridBag, the GridBagLayout also arranges components in a grid- like fashion,
but GridBagLayout gives precise control over the row and column where each component should go. A
GridBagLayout object is paired with a GridBagConstraints object, which defi nes the rows, columns,
any spanning across those (for big components), and other settings. Note in the following example how
the row and column are specifi ed for each component added:

Code Snippet CC1.9
// Create a JPanel
JPanel mainPanel = new JPanel();
mainPanel.setBorder(BorderFactory.createTitledBorder("Name Concatenation"));

mainPanel.setLayout(new GridBagLayout());

// Create the GridBagConstraints object
GridBagConstraints gbSettings = new GridBagConstraints();

// . . .

// Add components to the JPanel container

// Set the GridBag constraints and specify
// grid positions of each component.
gbSettings.fill = GridBagConstraints.HORIZONTAL;
gbSettings.gridx = 0; // What row? Indexing starting at 0
gbSettings.gridy = 0; // What col? Indexing starting at 0
mainPanel.add(lblFirstName, gbSettings);

gbSettings.gridx = 1;
gbSettings.gridy = 0;
mainPanel.add(txtFirstName, gbSettings);

gbSettings.fill = GridBagConstraints.HORIZONTAL;
gbSettings.gridx = 0;
gbSettings.gridy = 1;
mainPanel.add(lblSecondName, gbSettings);

gbSettings.gridx = 1;
gbSettings.gridy = 1;
mainPanel.add(txtSecondName, gbSettings);

gbSettings.fill = GridBagConstraints.HORIZONTAL;
gbSettings.gridx = 1;
gbSettings.gridy = 2;
mainPanel.add(btnConcatName, gbSettings);

// Positioning the JtextArea
gbSettings.fill = GridBagConstraints.HORIZONTAL;
gbSettings.gridx = 0;

424 • Companion Chapter 1 / Creating Java User Interfaces with Swing

gbSettings.gridy = 3;
gbSettings.gridwidth = 2; // Span two columns
gbSettings.ipady = 100; // Make this component tall
mainPanel.add(txtaOutput, gbSettings);

Th is will arrange the components on our GUI in the following manner:

Figure CC1.19. Swing Controls Arranged Using a GridBagLayout Layout Manager
Notice that with GridBagLayout, the grid is arranged in rows and columns, with the fi rst row and fi rst

column starting count using index notation at 0. So like with a two- dimensional array, the fourth row would
be index 3, the eighth column would be index 7, and so on. Oracle’s documentation for both GridBagLayout
and GridBagConstraints walks through the many additional options for sizing, fi lling, and positioning as
well as absolute versus relative positioning of components using GridBagLayout.*,†

Final design for NameConcatenation: So what is the best layout manager design for the NameConcatenation
GUI? Th ere are many choices. Using a BoxLayout for the overall form in vertical orientation and adding two
JPanel containers each using a FlowLayout manager could work best. Th e GridBagLayout off ers the most
concise arrangement but could be just as tedious as manually setting sizes and positions. Th ere are lots of
options. Here is the full MainForm class code listing with changes (in bold) to highlight this chosen layout:

Code Snippet CC1.10
package com.javaforis.nameconcatenation;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

import java.util.*;

// Class Declaration
public class MainForm {

 // Class- level declarations of
 // components
 JFrame mainFrame;
 JLabel lblFirstName;
 JLabel lblSecondName;
 JTextField txtFirstName;
 JTextField txtSecondName;
 JButton btnConcatName;
 JTextArea txtaOutput;

 // Zero- Arg Constructor for MainForm
 public MainForm()
 {
 // Create the JFrame
 mainFrame = new JFrame();

* https:// docs .oracle .com/ javase/ 7/ docs/ api/ java/ awt/ GridBagLayout .html.
† https:// docs .oracle .com/ javase/ 7/ docs/ api/ java/ awt/ GridBagConstraints .html.

CC1.2 Building a Basic Swing GUI Java Application • 425

 // Create two JPanel containers

 // Input Container
 JPanel inputPanel = new JPanel();
 inputPanel.setBorder(
 BorderFactory
 .createTitledBorder("Enter Name Information:"));
 // Output Container
 JPanel outputPanel = new JPanel();
 outputPanel.setBorder(
 BorderFactory
 .createTitledBorder("Application Output:"));

 // Create the components
 lblFirstName = new JLabel("First Name:");
 lblSecondName = new JLabel("Second Name:");
 txtFirstName = new JTextField();
 txtSecondName = new JTextField();
 btnConcatName = new JButton("Submit - >");
 txtaOutput = new JTextArea();

 // Size the JFrame window
 mainFrame.setSize(350, 500);

 txtFirstName.setColumns(20);
 txtSecondName.setColumns(20);

 txtaOutput.setColumns(30);
 txtaOutput.setRows(15);

 // Set the layout manager for the JFrame
 // Box Layout with Vertical orientation.

 // Since we are mixing layout managers, we pass
 // a reference to the contentPane for the JFrame
 // to prevent "sharing" errors.
 mainFrame.setLayout(
 new BoxLayout(
 mainFrame.getContentPane(),
 BoxLayout.Y_AXIS));

 // Set the Layout Managers for the Input and Output
 // JPanel containers

 // Overloaded version of FlowLayout constructor used
 inputPanel.setLayout(new FlowLayout(FlowLayout.LEFT));
 outputPanel.setLayout(new FlowLayout(FlowLayout.CENTER));

 // Add components to the inputPanel
 inputPanel.add(lblFirstName);
 inputPanel.add(txtFirstName);
 inputPanel.add(lblSecondName);
 inputPanel.add(txtSecondName);
 inputPanel.add(btnConcatName);

 // Add components to the outputPanel
 outputPanel.add(txtaOutput);

 // Add the JPanel to the JFrame

426 • Companion Chapter 1 / Creating Java User Interfaces with Swing

 mainFrame.add(inputPanel);
 mainFrame.add(outputPanel);

 // Cause text in the JtextArea to wrap
 txtaOutput.setLineWrap(true);

 // Specify what should happen when the main window is closed.
 mainFrame
 .setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);

 // Indicate that the JFrame should display itself.
 mainFrame.setVisible(true);

 } // End of Constructor MainForm();

} // End of Class MainForm

The Java Swing form will display like so:

Figure CC1.20. Final Layout for the NameConcatenation Java Swing Form
This design is fairly close to the wireframe design from figure CC1.6. Use of the GridBagLayout as seen

earlier would give an exact re- creation of the design but at the expense of tedious positioning of components.
For small applications, this could be an acceptable trade- off, but you will have to decide which design to fol-
low. The first example using simply a FlowLayout manager for all the components would work as well but not
match the wireframe design too closely. Swing’s layout managers provide flexibility!

SUMMARY POINTS

• The Swing framework is used to build Java- based
GUI applications using object- oriented syntax that
is similar to that of the Java language itself.

• Swing was a useful evolution of Java GUI
frameworks	after	AWT,	containing	user	interface	
components that would display and behave the
same across execution platforms.

• Swing uses a containment hierarchy to manage
the relationship between components and
containers in memory and to specify how they
will be visually displayed.

• Each JFrame contains a JLayeredPane,	Container,	
and Component	data	field	to	represent	and	provide	

access to the various layers displayed on a
Swing form.

•	 Because	many	of	the	Swing	components	are	
subclasses of the JComponent	class,	they	share	
many	methods,	particularly	methods	that	can	
change	the	look,	behavior,	and	contents	of	
components.

• Developers can manually set the location
and	sizes	of	components	on	a	Swing	form,	
or they can use various layout managers to
automatically arrange and size components
according to layout manager behavior.

CC1.3 Understanding Event Handling in Swing • 427

QUICK PROBLEMS

* https:// docs .oracle .com/ javase/ tutorial/ uiswing/ events/ index .html.

 1. Coding:	Build	a	small	Swing	application	UI	that	has	
a JTextField and a JPasswordField. Add a JButton
with the caption “Login” (no logic is needed for this
problem).

 2. Think: Why would developers choose to use a lay-
out manager instead of specifying the location and
sizes of Swing components in the UI themselves?

 3. Coding:	Build	a	small	Swing	application	UI	that	
allows a user to build a pizza order. Include

JRadioButton controls for the selection of
cheese type (include a “None” option to
account for customer health concerns). Include
JCheckBox controls for various toppings. Include a
JTextField	for	the	quantity	and	a	final	JCheckBox
control	for	pizza	size.	Finally,	add	a	JButton with
the caption “Add to Order - >” (no logic is needed
for this problem).

CC1.3 Understanding Event Handling in Swing
Learning about the nature of Java Swing, how components work, the layout managers that Swing provides
for styling your GUI forms, and the customizations to all of these that can be made are merely half the battle.
In order to be useful, our GUI forms must be capable of actions and of executing the logic and information
processing tasks. Enabling your GUI- based application to respond to user interaction events by executing
code is known as event handling. Classes and objects are involved in the event-handling process, giving the
developer considerable flexibility in “wiring up” events. Oracle’s official event- handling documentation goes
into considerable detail, but the basics will be covered in this chapter.*

Event delegation model: Chapter 10 discusses how runtime errors can be mitigated through error handling.
Instance objects of class Exception, and its subclasses are “thrown” when a specific issue arises. This concept
of “throwing” and “catching” objects generated by some event is the same for event handling. Swing’s event-
handling approach follows the event delegation model. In a Swing form, when a JButton is clicked, a letter
is typed in a JTextField, a mouse cursor hovers over a component or container (or hovers out/leaves), and so
on—all these actions will generate an event. In Swing, instance objects of the EventObject class and its
subclasses will be created and thrown because of user-
generated actions. With event delegation, the component
that generates the event does not contain the code that
handles the event. The developer can specify (i.e., dele-
gate) that some other target object’s code will handle the
event and that the source object’s job (the component
that generated the event) is simply to pass the
EventObject off to the delegated target. This keeps things
flexible because in Swing, you can conceivably change
how an event for a component is handled on the fly (dur-
ing runtime) if you wanted. Figure CC1.21 presents an
example of event delegation in action.

In Swing, JComponent objects and their subclasses can generate EventObject objects through user activity.
On a Swing form, controls such as JButton, JTextField, JSlider, and the JFrame itself are commonly where
user interaction causes event actions to be fired off. Many of these component classes have methods imple-
mented that allow for the registration of an event handler, which is how event delegation occurs in Swing.
For example, when a user clicks a JButton on a form, it will create and throw (or “fire off ”) an EventObject
instance object. You get to delegate “who” will catch and handle the thrown EventObject object. Event han-
dling for a JComponent object is accomplished in two overall steps:

Figure CC1.21. Event Delegation When a JButton Is Clicked

428 • Companion Chapter 1 / Creating Java User Interfaces with Swing

• Based on the event to the handled, invoke the appropriate event handling method on the JComponent
object (e.g., a JButton).

• Include a reference to an event-handling class object as a parameter to the invoked method. This is
the object you will delegate the event handling task to.

Three ways of handling events in Swing: A simple example using a JButton will help. You can “wire up”
the “Submit - >” JButton on the NameConcatenation Swing form so that when a user clicks it, test output
is printed to the JTextArea on the form (we will implement the actual concatenation logic afterward). To
handle events, we need several things to be in place:
 1. A Source object: In this case, the JButton instance object that is clicked is our source.
 2. A Target object: This will be the instance object of a class that can handle EventObject objects.

You will need to create this class and instantiate an object from it. There are three ways to do this:
 a. An inner (i.e., nested) event- handling class
 b. An anonymous inner event- handling class
 c. The use of a lambda expression (think: shortcut syntax)

A class can handle events when the class implements an event- listening interface (see com-
panion chapter 4 for more detail on interfaces in Java).

 3. Invoking the event registration method: Choose and invoke the appropriate event- handling method
upon the source object and pass a reference to the target object as a parameter. This will “register”
an instance object of the event- handling class you have created to be a listener for specific types of
EventObject objects when they are thrown.

Best practice: Any GUI components that the event- handling object may change (like changing text, color,
etc.) should be defined at the data field level due to scope.

Recall the JButton object on the form. It has an event registration method defined for JButton clicks,
called .addActionListener(), that can be invoked when needed. So all that is needed is to define an event-
handling class and instantiate one of its objects.

There are three ways to create this class:
Event- handling technique #1— inner event- handling class: Java classes allow for another class to be

defined within their class body (but outside of any method). These are considered nested or inner classes. Since
an object must handle events and classes are the definitions for objects, we must define an event- handling
method. In our code listing, after the end of the MainForm constructor, write the code for the following class
(you will want to make sure this code is inside the MainForm class):

Code Snippet CC1.11
// . . .
} // End of MainForm() Constructor

// Inner Event- Handling Class Definition
class ButtonClickHandler implements ActionListener{
 public void actionPerformed(ActionEvent e)
 {
 txtaOutput.append("Event Handled!");
 }
}

A couple of things to note here:
• The implements ActionListener part of the class header tells Java that this class implements an inter-

face known as ActionListener.* If you want an inner class to handle events in your GUI, you must have
that class definition implement one of the event listener interfaces. An interface (companion chapter 4)
is simply a way of relating classes together that are not normally related to one another at all (not in an
inheritance relationship).

* https:// docs .oracle .com/ javase/ 7/ docs/ api/ java/ awt/ event/ ActionListener .html.

CC1.3 Understanding Event Handling in Swing • 429

• If a class implements an interface, it is usually required to include a definition for any methods that are
part of the interface class’s definition. Notice we have a .actionPerformed() method. This is defined in
the ActionListener interface. Since our class implements this interface, you are forced (i.e., Java law!) to
implement a local, concrete definition of
this method (more on this in companion
chapter 4).

• Notice that after all this, the code we
want to have execute (placing some text
in the JTextArea) is the code within the
.actionPerformed() method. When an
EventObject object is passed to the instance
object of this class, the .actionPerformed()
method will automatically be called to han-
dle the event.

Now back in the MainForm constructor, you can
create an instance object of this event- handling
inner class and register that object as the listener
for any click events from the JButton control:

Code Snippet CC1.12
ButtonClickHandler bte = new ButtonClickHandler();
btnConcatName.addActionListener(bte);

Figure CC1.22 details the sequence of events that happens when the user clicks the JButton.
Here is the full code listing for MainForm reference (with the event- handling changes in bold):

Code Snippet CC1.13
package com.javaforis.nameconcatenation;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

import java.util.*;

// Class Declaration
public class MainForm {

 // Class- level declarations of
 // components
 JFrame mainFrame;
 JLabel lblFirstName;
 JLabel lblSecondName;
 JTextField txtFirstName;
 JTextField txtSecondName;
 JButton btnConcatName;
 JTextArea txtaOutput;

 // Zero- Arg Constructor for MainForm
 public MainForm()
 {
 // Create the JFrame
 mainFrame = new JFrame();

 // Create two JPanel containers

 // Input Container

Figure CC1.22.	Event-	Handling	Sequence	Using	an	Inner	Listener	Class

430 • Companion Chapter 1 / Creating Java User Interfaces with Swing

 JPanel inputPanel = new JPanel();
 inputPanel.setBorder(
 BorderFactory
 .createTitledBorder("Enter Name Information: "));
 // Output Container
 JPanel outputPanel = new JPanel();
 outputPanel.setBorder(
 BorderFactory
 .createTitledBorder("Application Output:"));

 // Create the components
 lblFirstName = new JLabel("First Name:");
 lblSecondName = new JLabel("Second Name:");
 txtFirstName = new JTextField();
 txtSecondName = new JTextField();
 btnConcatName = new JButton("Submit - >");
 txtaOutput = new JtextArea();

 // Size the JFrame window
 mainFrame.setSize(350, 500);

 txtFirstName.setColumns(20);
 txtSecondName.setColumns(20);

 txtaOutput.setColumns(30);
 txtaOutput.setRows(15);

 // Set the layout manager for the JFrame
 // Box Layout with Vertical orientation.

 // Since we are mixing layout managers, we pass
 // a reference to the contentPane for the JFrame
 // to prevent "sharing" errors.
 mainFrame.setLayout(
 new BoxLayout(
 mainFrame.getContentPane(),
 BoxLayout.Y_AXIS));

 // Set the Layout Managers for the Input and Output
 // JPanel containers

 // Overloaded version of FlowLayout constructor used
 inputPanel.setLayout(new FlowLayout(FlowLayout.LEFT));
 outputPanel.setLayout(new FlowLayout(FlowLayout.CENTER));

 // Add components to the inputPanel
 inputPanel.add(lblFirstName);
 inputPanel.add(txtFirstName);
 inputPanel.add(lblSecondName);
 inputPanel.add(txtSecondName);
 inputPanel.add(btnConcatName);

 // Add components to the outputPanel
 outputPanel.add(txtaOutput);

 // Add the JPanel to the JFrame
 mainFrame.add(inputPanel);
 mainFrame.add(outputPanel);

 // Cause text in the JtextArea to wrap

CC1.3 Understanding Event Handling in Swing • 431

 txtaOutput.setLineWrap(true);

 // Specify what should happen when the main window is closed.
 mainFrame
 .setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);
 // Indicate that the JFrame should display itself.
 mainFrame.setVisible(true);

 ButtonClickHandler bte = new ButtonClickHandler();
 btnConcatName.addActionListener(bte);

} // End of Constructor MainForm();

 class ButtonClickHandler implements ActionListener{

 @Override // Optional Compiler Flag
 public void actionPerformed(ActionEvent e)
 {
 txtaOutput.append("Event Handled!");
 }
 }

} // End of Class MainForm

Event- handling technique #2— anonymous inner event- handling class: Swing’s event- handling syntax simpli-
fies technique #1 a bit by combining both the class definition and event- handling object instantiation into one
step and placing this in- line within the event registration method parameter of the JButton object. In this
example, you do not need to add an inner class placed outside the MainForm constructor. Instead, define and use
the class all in one step, and do this within the parameter list of the .addActionListener() method like so:

Code Snippet CC1.14
btnConcatName.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent e)
 {
 txtaOutput.append("Mischief Managed!");
 }
}); // end of the .addActionListener parentheses

Java knows what you are trying to do and allows this shortcut. Notice that you use the interface ActionListener,
but the “inner” class is not named as it was in technique #1. This is known as an anonymous inner class— anonymous
because it is nameless. Notice also that this occurs within the parameter list of the .addActionListener()
method. A new, nameless class is being defined, one that implements the ActionListener interface, and a new
instance object of that anonymous class is being instantiated and registered as the event handler for JButton
clicks . . . all in one step! The full class we defined outside the constructor earlier has been removed and is no
longer needed. The end of the constructor and class now looks like this:

Code Snippet CC1.15
 // Inside MainForm's constructor:
 // . . .
 btnConcatName.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent e)
 {
 txtaOutput.append("Mischief Managed!");
 }
 }); // end of the .addActionListener parentheses

 } // End of Constructor MainForm();

} // End of Class MainForm

432 • Companion Chapter 1 / Creating Java User Interfaces with Swing

Event- handling technique #3— event handling using a lambda expression: This technique is even easier.
In Java (and in most modern OO languages), lambda expressions have become very popular because of their
very short syntax and ease of use. The easiest way to understand them is to think about the parameter inputs
and code body of any Java method. A lambda expression simplifies a method into one line of code:
(input parameter(s)) - > { expression }

Notice that the arrow is actually part of the syntax; it is a lambda operator. Lambda expressions in Java are
normally passed to another method as a parameter. With event handling, a lambda expression can be used
where a reference to an instance object is expected and where that instance object is one of a class that imple-
ments an interface. Sound familiar? You can use a lambda expression to replace the anonymous inner event-
handling class with a much simpler syntax:

Code Snippet CC1.16
btnConcatName.addActionListener(e - > {
 txtaOutput.append("Event Handled!");
});

That’s it! Java knows that you are accepting a single parameter and code that is executing. You are using this
lambda expression where a reference to an event- handling class instance object (that implements the
ActionListener interface) is expected and where that class implements the .actionPerformed() method.
The e parameter is understood to be the EventObject instance object “caught” by the implied .actionPerformed()
method. Java figures out the rest and executes the code in the lambda expression when events are generated
by JButton clicks! This is by far the easiest way to handle events in Swing.

When each event- handling technique should be used: For some of the event- listening interface classes
like ActionListener, there is only one method defined in the interface that will execute your code to “handle”
the method. For example, with ActionListener, the method .actionPerformed() is the only listener method
defined in the code. Since this works well with clicks of JButton, then whenever you need to handle JButton
clicks by the user, a lambda expression will work well in your code. Anytime a listener interface class has only
one listener method defined, you can use the lambda expression.

In most other cases, listener interface classes may have more than one listener method defined. Table CC1.2
gives an example of some of the other listeners that can be used with other JComponent objects in a
Swing GUI. The official Oracle documentation gives a full listing of all the listener interfaces and their
defined methods as well as a listing of various components and their common listeners.*,† For example, if
you are handling events like a mouse moving over a component or moving away, these would be two dif-
ferent events. Table CC1.2 shows that there is a listener method defined for each as well as for other mouse
events.

A rule of interface classes in Java is that a local, fully coded definition for all abstract methods defined
within that interface must be implemented. Since, for example, the MouseListener interface contains
multiple listener methods, we have to define each and every one of these. Since they all contain an event
parameter “e,” the lambda expression technique will not work here, and we will need to use technique #1
and add an inner event- handling class. In the following code, a mouse event- handling class is defined, and
an instance object of the class is created, registering it with the JButton’s MouseListener event registration
method:

* https:// docs .oracle .com/ javase/ tutorial/ uiswing/ events/ api .html.
† https:// docs .oracle .com/ javase/ tutorial/ uiswing/ events/ eventsandcomponents .html.

CC1.3 Understanding Event Handling in Swing • 433

Code Snippet CC1.17
// . . .
btnConcatName.addMouseListener(
 new MouseMotionHandler());

} // End of Constructor MainForm();

// Inner Mouse Event- Handling Class
class MouseMotionHandler implements MouseListener
{
 public void mouseClicked(MouseEvent e)
 {
 // Do nothing.
 }

 public void mouseEntered(MouseEvent e)
 {
 btnConcatName.setBackground(Color.ORANGE);
 }

 public void mouseExited(MouseEvent e)
 {
 btnConcatName.setBackground(Color.LIGHT_GRAY);
 }

 public void mousePressed(MouseEvent e)
 {
 // Do nothing.
 }

 public void mouseReleased(MouseEvent e)
 {
 // Do nothing.
 }

} // End of MouseMotionHandler class

} // End of Class MainForm

Table CC1.2. Some Common UI Events and How to Handle Them in Swing

Common events Event object thrown
Registration method, parameter interface, and listener
methods for interface

Button click ActionEvent .addActionListener(ActionListener lis)
.actionPerformed(ActionEvent ae)

Mouse events MouseEvent .addMouseListener(MouseListener mls)
.mouseClicked(MouseEvent me)
.mouseEntered(MouseEvent me)
.mouseExited(MouseEvent me)
.mousePressed(MouseEvent me)
.mouseReleased(MouseEvent me)

Keyboard key pressed KeyEvent .addKeyListener(KeyListener kl)
.keyPressed(KeyEvent ke)
.keyReleased(KeyEvent ke)
.keyTyped(KeyEvent ke)

List item clicked/selected ListSelectionEvent .addListSelectionListener(ListSelectionListener lsl)
.valueChanged(ListSelectionEvent lse)

434 • Companion Chapter 1 / Creating Java User Interfaces with Swing

Finishing basic functionality for NameConcatenation: Now that you have a good overview of event handling,
the test print to the JTextArea can be reimplemented with the actual purpose of this application. The code
listing for the event- handling registration method would look like the following:

Code Snippet CC1.18
btnConcatName.addActionListener(e - > {
 String fullName = "Your full name is: \"";
 fullName += txtFirstName.getText();
 fullName += " " + txtSecondName.getText() + "\"";
 if (txtaOutput.getText().length() == 0)
 txtaOutput.append(fullName);
 else
 txtaOutput.append("\n" + fullName);

 txtFirstName.setText("");
 txtSecondName.setText("");
});

Notice that quotation marks are escaped within the displayed String, the result is
appended to the JTextArea, and the JTextField components are cleared out after each
use. This gives the user the visual cue that the GUI is ready for their next interaction/
usage. Figure CC1.23 shows the GUI after a few names are entered.

Handling events thrown by keyboard events: An extensive discussion of how to
handle events of all types from all components would be beyond the scope of this
chapter. The official Oracle documentation and many exemplary tutorials online
can take you through those examples thoroughly.*,†,‡ That said, you can now lever-
age table CC1.2 and your knowledge of event- listening interfaces, their methods,
how to create classes that use these interfaces, and how to register them to handle
events. With some clever coding, the JButton can be removed altogether, and the
concatenation action occurs when the user hits the Enter key on their keyboard
when typing is completed. The modified code for this would look like this (with
changes in bold):

Code Snippet CC1.19
package com.javaforis.nameconcatenation;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

import java.util.*;

// Class Declaration
public class MainForm {

 // Class- level declarations of
 // components
 JFrame mainFrame;
 JLabel lblFirstName;
 JLabel lblSecondName;
 JTextField txtFirstName;
 JTextField txtSecondName;
 //JButton btnConcatName;

* https:// docs .oracle .com/ javase/ tutorial/ uiswing/ events/ handling .html.
† https:// www .javatpoint .com/ event -handling -in -java.
‡ https:// www .tutorialspoint .com/ swing/ swing _event _handling .htm.

Figure CC1.23. The Name
Concatenation GUI Application
after Example Usage

CC1.3 Understanding Event Handling in Swing • 435

 JTextArea txtaOutput;

 // Zero- Arg Constructor for MainForm
 public MainForm()
 {
 // Create the JFrame
 mainFrame = new JFrame();

 // Create two JPanel containers

 // Input Container
 JPanel inputPanel = new JPanel();
 inputPanel.setBorder(
 BorderFactory
 .createTitledBorder("Enter Name Information: "));
 // Output Container
 JPanel outputPanel = new JPanel();
 outputPanel.setBorder(
 BorderFactory
 .createTitledBorder("Application Output:"));

 // Create the components
 lblFirstName = new JLabel("First Name:");
 lblSecondName = new JLabel("Second Name:");
 txtFirstName = new JTextField();
 txtSecondName = new JTextField();
 //btnConcatName = new JButton("Submit - >");
 txtaOutput = new JtextArea();

 // Size the JFrame window
 mainFrame.setSize(350, 500);

 txtFirstName.setColumns(20);
 txtSecondName.setColumns(20);

 txtaOutput.setColumns(30);
 txtaOutput.setRows(15);

 // Set the layout manager for the JFrame
 // Box Layout with Vertical orientation.

 // Since we are mixing layout managers, we pass
 // a reference to the contentPane for the JFrame
 // to prevent "sharing" errors.
 mainFrame.setLayout(
 new BoxLayout(
 mainFrame.getContentPane(),
 BoxLayout.Y_AXIS));

 // Set the Layout Managers for the Input and Output
 // JPanel containers

 // Overloaded version of FlowLayout constructor used
 inputPanel.setLayout(new FlowLayout(FlowLayout.LEFT));
 outputPanel.setLayout(new FlowLayout(FlowLayout.CENTER));

 // Add components to the inputPanel
 inputPanel.add(lblFirstName);
 inputPanel.add(txtFirstName);
 inputPanel.add(lblSecondName);

436 • Companion Chapter 1 / Creating Java User Interfaces with Swing

 inputPanel.add(txtSecondName);
 //inputPanel.add(btnConcatName);

 // Add components to the outputPanel
 outputPanel.add(txtaOutput);

 // Add the JPanel to the JFrame
 mainFrame.add(inputPanel);
 mainFrame.add(outputPanel);

 // Cause text in the JtextArea to wrap
 txtaOutput.setLineWrap(true);

 // Specify what should happen when the main window is closed.
 mainFrame
 .setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);
 // Indicate that the JFrame should display itself.
 mainFrame.setVisible(true);

 // Register a KeyEventHandler instance
 // object for txtSecondName
 txtSecondName.addKeyListener(
 new KeyEventHandler());

 } // End of Constructor MainForm();

 class KeyEventHandler implements KeyListener
 {
 public void keyPressed(KeyEvent e)
 {
 if (e.getKeyCode() == KeyEvent.VK_ENTER)
 {
 String fullName = "Your full name is: \"";
 fullName += txtFirstName.getText();
 fullName += " " + txtSecondName.getText() + "\"";
 if (txtaOutput.getText().length() == 0)
 txtaOutput.append(fullName);
 else
 txtaOutput.append("\n" + fullName);

 txtFirstName.setText("");
 txtSecondName.setText("");
 }

 }

 public void keyReleased(KeyEvent e)
 {
 // Do Nothing
 }

 public void keyTyped(KeyEvent e)
 {
 // Do Nothing
 }
 }

} // End of Class MainForm

CC1.3 Understanding Event Handling in Swing • 437

Notice that the JButton declaration and settings have been commented out and its associated lambda expres-
sion, mouse listener registration, and mouse event- handling classes have been removed. The code now handles a
KeyEvent event object for txtSecondName. In the event- handling logic, e is the parameter passed and provides
a reference to the KeyEvent instance object thrown by the press of a key in the JTextField. The event is then
handled in the following manner:

• For each key press, the code checks to see if the specific
key pressed is the Enter key. First, the .getKeyCode()
method is invoked on the caught KeyEvent object,
which returns an int value.

• Next, this int value is compared to an enumerated
type in the KeyEvent class. If the value VK_ENTER
matches the key code from the KeyEvent object,
the names are concatenated and printed to the
JTextArea. Simple!

Figure CC1.24 shows the modified form both before and
after user interaction. Though this is a clever way to kick
off the concatenation action, you probably should always
have a button somewhere on your Swing form. Users typi-
cally expect them, and buttons visually send users a clear
“What should I do?” signal in your application.

SUMMARY POINTS

•	 Swing	uses	the	event	delegation	model,	which	
passes the responsibility for handling an event
off	to	code	other	than	the	object/code	that	
caused the event to be thrown.

• Similar to the Exception	classes	in	Java,	the	
EventObject	class	has	specific	event-	related	
subclasses to represent various actions that can
occur in a Swing GUI.

•	 In	an	event-	handling	scenario,	some	component	
or object will serve as the source and cause
an EventObject instance object to be “thrown.”
This event- related instance object will then be
“caught” and handled by the instance object of
a class listening for objects of that event type
coming	from	a	specific	source.

• Some event- related interface classes have
multiple	abstract	methods	that	must	be	defined	
by	an	event-	handling	class	you	create.	For	these,	
it is useful to use an inner event- handling class
(technique #1).

•	 An	inline,	anonymous	inner	event-	handling	class	
can	be	useful	in	defining	and	instantiating	an	
event- handling class using more concise syntax
(technique #2).

• A lambda expression can “shortcut” the syntax
for	defining,	instantiating,	and	registering	an	
event- handling class to a source component in
a very concise manner. Lambda expressions are
handy when the event- related interface class has
only	one	abstract	method	to	be	defined.

QUICK PROBLEMS

 1. Coding: Implement the logic for quick problem #1
in section CC1.2. Use a String for the username and
password	of	your	choosing,	and	compare	what	the	
user types into these values. Display the success
or failure of the login in a JLabel on the form.

 2. Think: What is the relationship between an event-
handling	 class	 that	 you	 write,	 the	 event-	related	

interface	class	used	for	various	types	of	events,	
and the EventObject class and its subclasses?

 3. Coding: Implement the logic for quick problem #3
in section CC1.2. Use a JTextArea to display a sum-
mary of the pizza order placed. Determine costs for
each	of	the	cheese,	topping,	and	size	options,	and	
display	the	order	total	as	configured	on	the	form.

Figure CC1.24.	Modified	Swing	GUI	Form—	before	and	after	
User Interaction

438 • Companion Chapter 1 / Creating Java User Interfaces with Swing

Summary
In	this	chapter,	we	have	covered	both	the	basics	and	
some advanced techniques in using the Swing GUI
framework	to	build	a	modern,	functional	GUI-	based	
Java application. The skills used in this chapter were
highly	integrative,	using	concepts	from	all	the	chapters	
you have studied throughout this text. Swing is still a
widely used GUI framework in Java and is particularly
in use in many corporate development environments
today. Your studies and practice in this area of Java
will put you ahead of student peers in the market who
may not be familiar with the many features of Swing.
Additionally,	as	information	systems	professionals,	
experience gained in concepts involving the “front- end”

design of an information system is invaluable toward
your	becoming	a	well-	rounded	expert	in	your	field.	How	
easy	users	find	your	system	to	learn	and	use,	how	the	
system	fulfills	business	requirements,	and	how	helpful	
users	perceive	the	system	to	be	will	all	be	heavily	influ-
enced	by	the	design	of	the	form,	handling	of	events,	and	
variety of controls plus the manner in which information
is displayed in the application. Spending time in this
area will help your future IS projects succeed! In the
next	and	last	chapter	of	this	textbook,	you	will	explore	
how to integrate database technology into your Java
application	to	fully	finish	out	the	functionality	of	a	con-
temporary,	business-	ready	system.

Practice Problems
Terminology
Match	the	following	terms	from	the	chapter	with	their	most	appropriate	definition:

 1. Graphical user
interface

 a. The structured relationship defined for containers and components in a Java Swing application.
Helps define the location in memory for visibly displayed UI components.

 2. Swing b. Method defined for a Java Swing JComponent class that allows the developer to specify which
event- handling class instance object should listen for and handle events generated by the
JComponent.

 3. Abstract Window
Toolkit

 c. A visualization developed by information systems analysts and developers to help in the planning of
the look, feel, and functionality of a to- be system.

 4. API d. The base object in a containment hierarchy.

 5. Containment hierarchy e. A hierarchical relationship between Swing objects in memory where the reference to one object is
stored within another, forming a chain of containment.

 6. JComponent f. A Java Swing layout manager that will display components in a single row until the horizontal space
is exhausted, moving the next down to another row below the previous.

 7. Root g. Instance object of a class that implements an event- handling interface. This object receives and
processes the ActionEvent object generated by a control or process in a Java Swing application.

 8. JLayeredPane h. Object in the Java Swing containment hierarchy that enables component nesting.

 9. Glass pane i. A Java Swing layout manager that allows the developer to add Swing components to a container in
grid- like fashion after specifying the number of rows and columns in the grid.

 10. Container j. The oldest of the official Java GUI frameworks. Was considered “heavy” and resource inefficient.
Often spurred additional work by developers using it who wanted to ensure universal look and feel
for their applications across platforms.

 11. Wireframe model k. A Java Swing layout manager that allows the developer to choose within which specific grid- located
row and column a Swing component will be placed.

 12. Nesting l. A nested component in the containment hierarchy that allows for a depth aspect of Swing GUI
components to be specified.

 13. FlowLayout m. The visual display of controls and output that a user can interact with (mouse, keyboard, touch),
allowing them to execute the logic of an application without the need for typed commands or
execution syntax.

CC1.3 Understanding Event Handling in Swing • 439

 14. BorderLayout n. “Shortcut” syntax that allows the developer to, among other syntax- summarizing tasks, define and
instantiate an event- handling class along with its abstract method in a short, simple syntax style.

 15. GridBagLayout o. Top- level class from which data- type classes for Java Swing events are defined.

 16. GridLayout p. The process where systems analysts and developers allow targeted and appropriate end users to
use a system still in development and provide development regarding topics such as ease of use
and efficacy.

 17. Event delegation
model

 q. A component data field of the JRootPane class. Overlays the entire visible JFrame area and is not
visible at first and allows for interception of events and overlaid drawing of the GUI.

 18. Event handler r. The top- level Java Swing class for all UI components, excluding the container classes.

 19. Event registration
method

 s. Stands for application programming interface, a defined set of functions/methods/commands for
building upon and interacting with a development language platform.

 20. ActionEvent class t. A Swing component that allows dynamic display of different components and containers depending
on which tab the user has selected.

 21. Lambda expression u. A popular GUI framework for Java developed by Oracle and still native to the Java language.
Extends and improves upon the AWT and defines its own controls for universal look and feel across
execution platforms.

 22. User testing v. An event- handling approach implemented by Java Swing that passes responsibility for handling an
event to code located elsewhere apart from the object that generated the event.

 23. JTabbedPane w. A Java Swing layout manager that allows the developer to specify directional positioning (“north,”
“south,” “east,” etc.) of controls in a container.

Find the Error
In	each	of	the	following	problems,	carefully	examine	
the	code	given,	and	determine	the	error(s)/issue(s)	
with	each.	Keep	in	mind,	the	error(s)	could	be	syn-
tax (code) or logic (intended outcome) based or
both! Assume any Swing code is listed within an

appropriate constructor or other valid location unless
stated	otherwise.	Where	ellipses	(. . .)	are	indicated,	
assume that necessary but unrelated code has been
omitted for clarity.

 1.

 JFrame mainframe = new JFrame();
 JTextField tOne = new JTextField();
 JTextField tTwo = new JTextField();
 mainPanel.setLayout(new GridLayout());
 gP.add(tOne, 0, 0);
 gP.add(tOne, 0, 1);
 . . .
 mainFrame.setVisible(true);

 2.

 JTextField firstNum = new JTextField ();
 JTextField secondNum = new JTextField ();
 JButton btnAdd = new Button("Concat Names");
 . . .
 btnAdd(e - > (
 int numA = firstNum;
 int numB = secondNum;
 System.out.println(numA * numB);

));

440 • Companion Chapter 1 / Creating Java User Interfaces with Swing

 3.

 TextField tOne = new JTextField();
 TextField tTwo = new JTextField();
 JButton btnAdd = new JButton{};
 JPanel somePanel = new JPanel();
 GridBagConstraints gp = new GridBagConstraints(GridBagLayout new);
 gP.add(JTextField(), 1, 0);
 gP.add(JTextField(), 0, 1);

 4.

 JComboBox cmboNames = new ComboBox();
 JTextArea txtNames = new JTextField();
 cmboNames.add("Suzie");
 cmboNames.add("Breyea");
 . . .
 for (int i>0;i<10;i++)
 {
 txtNames.setText(name.toString());
 }

 5.

 jButton btnFinish = new jButton();
 jLabel lblStatus = new Label("");
 . . .
 btnFinish.setOnKeyListener(new interface handle(
 Label.getText("Button Finished Clicked!");
 });

 6.

 AnchorPane aPane = new AnchorPane(Pos.Center);
 aPane.add(btnSubmit, 0, 0);
 AnchorPane.setAlignment(btnSubmit, 0.0);
 gPane.add(aPane, anchorRight);

 7. (Use Companion Chapter 1 Opening Scenario Application Supplemental for this problem)

 JButton btnUpdateList = new JButton();
 JComboBox cmboList = new JcmboBox();
 ArrayList<Integer> numberList = new ArrayList<>();
 . . .
 // code that gathers numbers from the UI and
 // adds them to numberList
 . . .
 btnUpdateList.addActionListener(e - > {
 for (Integer int : numberList)
 {
 cmboList.add(int);
 }
 });

 8. (Use Companion Chapter 1 Opening Scenario Application Supplemental for this problem)

 JTabbedPane classroomTabs = new JTabbedPane()
 classroomTabs.newTab("Students");
 classroomTabs.newTab("Faculty");
 somePanel.setContent(new JTabPane());

 9. (Use Companion Chapter 1 Opening Scenario Application Supplemental for this problem)

 // Assume the Person class is included and
 // any methods invoked upon its objects are

CC1.3 Understanding Event Handling in Swing • 441

 // defined.
 Person personOne = new Person();
 Person personTwo = new Person();
 JLabel lblStatusArea = new JLabel("");
 JComboBox personList = new JComboBox();
 personList.addItem(personOne);
 personList.addItem(personTwo);
 . . .
 lblStatusArea.setText(personList
 .getSelectionModel()
 .getSelectedIndex()
 (getPersonName()));

 10. (Use Companion Chapter 1 Opening Scenario Application Supplemental for this problem)

 JButton addTextFields = new JButton("Add New Field");
 int col = 0, row = 0;
 somePanel.setLayout(new GridBagLayout());
 GridBagConstraints gbc = new GridBagConstraints();
 // . . .
 gbc.gridx = col;
 gbc.gridy = row;
 addTextFields.addActionListener(e - > {
 somePanel.add(new JTextField(), gbc);
 TextField().setText("TextField #" + row);
 });

Think about It
 1. What advantages does a GUI application have over

a console- based application? What advantages
does a console- based application have over a GUI
one?

 2. Why was AWT’s lack of portability between plat-
forms a hindrance for developers?

 3. What characteristics does the Swing Java GUI
library	 share	 with	 JavaFX?	 What	 differentiates	
JavaFX	from	Swing?

	 4.	 How	is	Swing	an	object-	oriented	GUI	framework?
	 5.	 How	are	components	related	to	one	another	 in	

the	Swing	container	hierarchy?	How	does	this	help	
make development of Swing applications easier to
understand?

	 6.	 What	is	the	root	component	in	a	Swing	application,	
and why is it important? What relationship does it
have to the rest of the components and containers
in the application?

 7. Where does code execution start in a Swing
application?

 8. What is the difference between a JTextField and
a JTextArea in a Swing application?

 9. What do layout managers do in a Swing application?

 10. What is the data type returned by the
.getSelectedItem() method in JComboBox? What
is the relationship between the referenced object
and the JComboBox itself?

 11. What is the general approach that Swing uses to
handle GUI events?

	 12.	 How	is	event	handling	in	Swing	similar	to	error	han-
dling in Java?

	 13.	 Why	 is	 it	 beneficial	 to	 have	 subclasses	 for	 the	
EventObject class?

 14. What type of parameters do event- handling registra-
tion methods for components accept? Where does
the parameter come from?

	 15.	 What	are	the	benefits	of	using	a	lambda	expression	
in an event- handling method?

	 16.	 How	is	creating	a	second	JFrame in your Swing
application related to the object- oriented nature
of Swing?

 17. What is important to keep in mind when pulling
data from and putting values into Swing JTextField
controls?

 18. What is the difference between a JComboBox and a
JList control?

442 • Companion Chapter 1 / Creating Java User Interfaces with Swing

Short Syntax Problems
 1. Develop a Swing application that will accept the

entry of a user’s name. Include a JButton that
when	clicked,	the	user’s	name	will	be	displayed	in	
a JLabel	on	the	form,	but	with	the	letters	printed	
in reverse.

 2. Develop a Swing application that will allow a user
to type in a long paragraph in a JTextArea. Ensure
that the text wraps within the JTextArea. Include
a JButton that when clicked will pop up a second-
ary form that will report the number of each of the
English vowels (a,	e,	i,	o,	u,	and	y) found in the para-
graph entered.

 3. Develop a Swing application that will ask the user
to enter two numbers. The application will gener-
ate a quantity of random numbers between those
two	values.	Include	the	quantities	five	through	ten	
in a JComboBox on the form. Include a JButton that
when clicked will read the quantity selected in the
JComboBox and generate that quantity of random

numbers	between	the	first	and	second	entered	
somewhere on the form. Include a small bit of logic
making sure the second number is larger than the
first.	Include	a	warning	on	the	form	if	this	is	not
the	case,	and	do	not	let	number	generation	occur	
if so.

 4. Develop a Swing application that allows the user to
enter a paragraph in a JTextArea. In a JComboBox,	
include	three	text	editing	options:	“Remove	all	blank	
spaces,”	“Convert	to	lowercase,”	“Remove	all	vow-
els.” Include a JButton that when clicked will carry
out the currently selected command and edit the
contents of the JTextArea accordingly.

 5. Develop a Swing application that includes a single
JButton control in the center. When the JButton is
clicked,	it	will	move	to	a	random	x	and	y	location	on	
the form. Hint: Use a JPanel,	get	the	current	width	
and height of the JFrame,	and	use	the	.setBounds()
method.

Full Problems
 1. Complete the functionality for the “Grocery

Inventory Management 0.1” Swing application by
implementing	the	following:

 a. Research how to programmatically exit the
application,	 and	 enable	 the	 App	 -	>	 Quit	 App	
JMenuItem to close the application out.

 b. Add a new Menu called “Summary” with a
MenuItem called “Generate Summary.” When
the user clicks this MenuItem,	a	secondary	form	
will pop up and list the total revenue that would
occur if every item in the grocery store was sold.
Make sure to format the information appropri-
ately as a monetary amount.

 2. Researchers in the information systems discipline
generally include references to their research that
follow the style detailed in the Publication Manual
of the American Psychological Association. A tem-
plate for the reference style for a regular academic
journal article looks like the following (minus any
alignment	requirements):

Author,	A. A.,	Author,	B. B.,	&	Author,	C. C.	
(Year). Title of article. Title of Periodical, volume
number(issue	number),	pages.

Develop a Swing application that prompts for the
following	information:
• Year of article
• Title of article
• Title of the periodical
• Volume number
• Issue number
•	 Pages	(in	style	##–	##)
• First author’s name

Include a JButton that allows the user to dynami-
cally add another JTextField if there is a second
author,	another	if	there	is	a	third,	up	to	six	authors.	
When	the	“Add	Author”	button	is	clicked,	a	new	
JTextField should be dynamically instantiated and
displayed.	A	final	JButton,	“Generate	Reference,”	
should display all the entered information accord-
ing to the reference style above in a JTextArea so
that the user can copy and paste it elsewhere. Hint:
You’ll need to keep references to all the new
JTextField objects generated so that you can
gather author names from them.

	cc1

