
Copyright © 2024 Prospect Press. All rights reserved. For use with Fundamentals of Java Programming for
Information Systems by Jeremy D. Ezell

C o m p a n i o n C h a p t e r 2

File I/O in Java

What You Will Learn in This Chapter
Working with file input and output (I/O) is a skill that
most developers will need at some point in their
careers. For information systems professionals learn-
ing to develop in the Java language, file I/O skills are
very important. Files present a great way to store data
in a more permanent fashion, provide data backups,
and enable data portability between Java applica-
tions. The Java language provides several easy- to- use
classes to help developers get up to speed quickly in
Java’s handling of file I/O.

Specifically, this chapter will help you do the following:
 1. Learn about the classes needed to write to and read

from plain- text data files
 2. Learn the basic concepts every programmer should

consider when working with file I/O

 3. Learn how the Scanner class can be used for more
than just console- based user input

 4. Learn how exception handling relates to file I/O and
how it enhances the stability of your application

 5. Learn how binary data files differ from plain text,
their benefits, and the classes used to interact with
them

 6. Learn how to write primitive data types out to and
read their values from a binary data file

 7. Learn how Java allows for complex data- type
objects to be written to and retrieved from a binary
data file

 8. Learn how the Serializable interface impacts the
use of class objects in binary data files

Opening Scenario
Your project manager begins the latest meeting by
stating, “The client’s data is all over the place. We can
consolidate and export it into a clean format, but then
it’ll be your job to import it into the new system!” You
have joined in on several meetings with your col-
leagues who are handling the discovery and mapping
of the data needs of the mom- and- pop grocery store
client. Their assessment is correct: the client has data
in spreadsheets and third- party desktop database
files, and some of it is in text files typed manually!
Both you and several of your fellow team members
know that demonstrating the prototype system with
data from their actual day- to- day operations will help
“sell” the development efforts. With so much else
going on, you quickly realize that typing in a lot of
their data manually will not be effective. You’ll need
to write code that imports this data: “Data quality will
be a concern, but we’ll try to standardize and correct

as many problems as possible before sending it over
to you,” you tell them.

The client had also purchased several analytics
software packages that will be, for now, separate
from the system your team is building. The grocery
inventory system will need the ability to export data
into files that can be sent over to the third- party sys-
tem. Your project manager has already specified
your role in this: “I’ll have the user interface team
design the forms and the part of the system that will
detail the export operation. I just need you to have a
good grasp on the code that will make it possible.”
Having worked with file input/output (I/O) operations
before in other languages, you are familiar with some
of the basic concepts. Working with file I/O in Java
will be new to you. Once again you dive into your
studies, intent on being ready to implement this func-
tionality for the team . . .

444 • Companion Chapter 2 / File I/O in Java

CC2.1 Basics of File I/O in Java
Learning how Java handles file input/output (I/O) activities begins with a discussion of the File class.* Con-
veniently, Java handles file access in a very object- oriented way. Instance objects of the File class effectively
act as object wrappers, containing information about the files on your hard disk. File class instance objects are
used by the other Java file I/O classes
that perform the actual reading and
writing of data from files, so it helps
to understand how this class works.

Basics to keep in mind: In general,
you need to know three things about
a file before you can work with it (and
these apply no matter the program-
ming language you work in, not just
Java):

• The name of the file
• The location of the file
• The contents and structure of the

data stored within the file
Instance objects of the File class can
store information on the name and
location of the file itself, useful because
other Java file I/O classes know how
to read and use this information from File objects. The structure and contents of a file are determined by you,
the developer. Generally, you will have to or can discover this information based on the project you are working
on or the problem you are trying to solve. For example, a file may contain a list of students and their grades,
the populations of various cities, or information on time, date, location, and temperature readings for a weather
forecasting office. One problem developers often face is knowing the quantity of data in a file. You may know
ahead of time that a file contains student names and their grades but not know how many students are listed
in the file. Your code’s logic must account for any unknowns like this and stay flexible in these situations.

The location of a file can be represented in two ways:
• Absolute path: This is where you use the fully qualified location of a particular file on a com-

puter system. For example, a text file containing student grades may have an absolute file
path of “C:\data\grades\Spring2023\Class0001.txt” in the Windows file system or
“/Users/ezellj/Library/data/grades/Spring2023/Class0001.txt” in Mac OS X and other similar
Unix OS file systems. In these two cases, the “C:\” and the very first “/” for Unix- flavored systems are
called the root elements of the file system. This helps Java know that you are using an absolute file path
to locate a file.
◦ Note: Because the Windows file system uses the backslash (“\”) to separate out the folders in a file path, in

a Java application, you will need to escape the backslash with another backslash (see chapter 3) when using
an absolute path. An example of this would be “C:\\data\\grades\\Spring2023\\Class0001.txt.”

• Relative path: More commonly used, this allows the developer to programmatically reference files that are
located relative to the program that is executing. For example, in a Java project, “data/Class0001.txt”
would refer to a file called “Class0001.txt” that is saved in a “data” folder that is local to the current
executing directory of your program. This is helpful in cases where your application might create a directory
and then choose that directory to write to / read from / store all external files it might use. Take particular
note that the relative file path did not start with a root element. Leaving the root element off helps Java

* https:// docs .oracle .com/ en/ java/ javase/ 17/ docs/ api/ java .base/ java/ io/ File .html.

Figure CC2.1.	Files	Can	Contain	a	Variety	of	Types,	Quantities,	and	Structures	of	
Data

Sources: “Tropical Island— Seychelles” by tiarescott is licensed under CC BY 2.0, https://
www .flickr .com/ photos/ 80403443 @N00/ 33515808; “Wheeler Island One of the 20 Tropical
Island Just Offshore from Mission Beach” by Paul from www .Castaways .com .au is licensed
under CC BY 2.0, https:// www .flickr .com/ photos/ 54113234 @N05/ 5031478376.

CC2.1 Basics of File I/O in Java • 445

know this file path should be processed in a relative manner (relative to where the Java program is execut-
ing). The Oracle documentation for the File class mentions that the file I/O classes we will explore in
this chapter assume a relative file path unless an absolute one is given.

Using the File class: You can test out the differences between the relative and absolute file paths easily to
fully understand their difference. Many of the examples throughout this chapter can be run in a standard Java
main() class file, and it would be helpful to create one here at the start.

In order to use the Java file I/O classes, you need to first add the appropriate import to your main() class
file. Add the following two, one for Java file I/O and the other so that the Scanner class can be used later in
this chapter:

Code Snippet CC2.1
import java.util.*; // to use Scanner
import java.io.*; // for Java File I/O

Instantiate a new object of the File class like so (code added to the
main() method):
// in main()
File nameFile = new File("nameFile.txt");

Figure CC2.2 shows both the logical and the physical contents of
the Java project folder in Apache NetBeans after running the pro-
gram with this one line of code. This project structure and contents
will be similar to other IDEs such as Eclipse. Notice that no file called
“nameFile.txt” currently exists. The File class does not actually cre-
ate the file; it is merely an instance object that stores information about
where the file is currently or is planned to be in the future.

Interestingly, the File class can also be used to create a directory.
Consider the following:

Code Snippet CC2.2
// in main()
File nameFile = new File("nameFile.txt");
File dataDir = new File("./dataDir");

dataDir.mkdir();

Notice the relative file path prefixed to the “dataDir” name in the
File instance object. When using a relative file path, prefixes can
be used:

• Current directory: You can reference the current working/
executing directory by using the prefix ./.

• Directory above the current: If you need to reference
something in the directory above the one you are currently
executing your application in, then use the prefix ../.
◦ For example, you can chain these prefixes together to

reference directories as high above the current as you need.
Two above the current would be ../../.

After running this code, figure CC2.3 shows the file contents of
our project. Notice that in Apache NetBeans, the “Projects” view
shows the logical view of the Java project, while the “Files” view shows the physical contents of the files in
the Java project. Other IDEs like Eclipse will show similar views.

Figure CC2.2. Logical and Physical File
Views	in	Apache	NetBeans

Figure CC2.3. Directory Created by Invoking
the .mkDir() Method on Our File Object

446 • Companion Chapter 2 / File I/O in Java

Though the Oracle documentation gives a complete listing of the methods available for the File class,
table CC2.1 lists some of the more important methods to be aware of and a brief description of each (besides
the overloaded constructor):

Table CC2.1. Select Methods of the File Class

Return type and method name Brief description

boolean .canRead() Returns true if the file (at the file path) can be read from

boolean .canWrite() Returns true if the file (at the file path) can be written to

boolean .delete() Returns true if the file or the directory (which must be empty) was successfully deleted

boolean .exists() Returns true if the file (at the file path) exists

String .getAbsolutePath() Returns a String that contains the full, absolute path of a file indicated by this File object

long .lastModified() Returns back the milliseconds- since- 1/1/1970 timestamp of when the file was last modified

String[] .list() Returns a String[] array of all the files and directories located within the directory indicated
by this File instance object

boolean .mkdir() Returns true if the directory represented by this File object was successfully created

If your application expects another program or process to create a file at a certain location before using it,
you can use the .exists() method to test for the existence of the file and .canRead() to ensure your applica-
tion has the appropriate level of permissions to access that file location.

I/O exceptions and writing to a text file: To further understand how the relative file path works in a Java
project, first you can try creating and writing out to a plain- text file. The PrintWriter class can be used to
easily write out to a file.* The class has several overloaded versions of its constructor, with three in particular
that will be discussed here:

• PrintWriter(File f): This version takes a reference to a File class instance object, similar to what we
created earlier.

• PrintWriter(String s): You can include a String or a String literal directly as a parameter of the
PrintWriter constructor, specifying the file path within the String value.

• PrintWriter(OutputStream o): Later in this chapter, the subclasses of the OutputStream class will
be examined. These come in handy for both appending data to a file and writing out binary data to a
.dat file.

The PrintWriter class instance objects can have the .print(), .println(), and .printf() methods invoked
upon them as you write out to a file. Also, PrintWriter will create a file when it writes if the file does not
already exist and will overwrite a file if it does. The use of an OutputStream instance object in the PrintWriter
constructor (as you will see later) allows appending to a file instead of destroying and overwriting it with new
data.

Consider the following code:

Code Snippet CC2.3
// in main()
File nameFile = new File("myName.txt");
PrintWriter fileOut = new PrintWriter(nameFile);

fileOut.print("Your Name");
fileOut.close(); // Always close your file connections!

* https:// docs .oracle .com/ en/ java/ javase/ 17/ docs/ api/ java .base/ java/ io/ PrintWriter .html.

CC2.1 Basics of File I/O in Java • 447

If your IDE can show compiler and syntax errors as you type, then you will see that the invocation of the
constructor is underlined with an error:
unreported exception FileNotFoundException; must be caught or declared to be thrown

Not good. Recall the discussion in chapter 10 where some Java code has a higher risk of an error occurring
during execution than others. Code that interacts with some external resources like a database connection, network
communication, multithreading, or, in this chapter’s case, file I/O could encounter an error, since your code has
no direct control over those external resources. In these cases, there are checked exceptions that your code must
explicitly handle to prevent errors in your application. In this case, you need to surround any file I/O activities in
a try…catch statement to handle any I/O exceptions that occur. IOException class objects or any of their sub-
classes (FileNotFoundException is one of these subclasses) can be “caught,” or superclass Exception objects
can be caught in a wide net as well. The earlier code can be modified to handle checked exceptions:

Code Snippet CC2.4
// in main()
// try…catch statement wrapping the File I/O code
try
{
 File nameFile = new File("myName.txt");
 PrintWriter fileOut = new PrintWriter(nameFile);

 fileOut.print("Your Name");
 fileOut.close(); // Always close your file connections!
}
catch (IOException ioex)
{
 System.out.println(ioex.toString());
}

Better! When this code is run, the new file should appear in your project as shown in figure CC2.4. Double-
clicking the file will open it in the editor of your IDE, and you should see the String “Your Name” in the file
in plain text. Notice the invocation of .close() at the end
of the try block’s logic: always close file connections when
you are done. This way, you prevent your application from
causing errors for the operating system or other applications
that may need to access a specific file.

Modify this example further, and add the use of the
.println() method instead of .print():

Code Snippet CC2.5
// in main()
try
{
 File nameFile = new File("myName.txt");
 PrintWriter fileOut = new PrintWriter(nameFile);

 fileOut.println("Your Name");
 fileOut.println("My Name");
 fileOut.close(); // Always close your file connections!
}
catch (IOException ioex)
{
 System.out.println(ioex.toString());
}

This will produce the following file contents:

Figure CC2.4. Plain- Text File Created in Project Directory
and Open in the Editor Widow

448 • Companion Chapter 2 / File I/O in Java

Your Name
My Name

Notice that both String values are still written out whole, but a new- line character (not visible) is added
to the end of each line due to the call to .println(), which outputs to the file the same way as it does when
we output to the console.

Reading in from a text file: Luckily, a familiar class can be used to easily read in from a plain- text file: the
Scanner class! All of the .next____() methods available in Scanner will work for reading in data from a file.
These Scanner methods will work the same way as they do for console input also (see chapter 0). The File
instance object reference is provided instead of the reference to the System.in member.

Further modify the code by using Scanner to read back in the data just written out to the file (in bold):

Code Snippet CC2.6
// in main()
try
{
 File nameFile = new File("myName.txt");
 PrintWriter fileOut = new PrintWriter(nameFile);

 fileOut.println("Your Name");
 fileOut.println("My Name");
 fileOut.close(); // Always close your file connections!

 Scanner fileIn = new Scanner(nameFile);
 System.out.println(fileIn.nextLine());
 System.out.println(fileIn.nextLine());
 fileIn.close();
}
catch (IOException ioex)
{
 System.out.println(ioex.toString());
}

Executing this code will produce the following on the console, exactly matching what was stored in the text file:
Your Name
My Name

What if you accidentally try to read in more data than is present in the text file? You know that there are only
two names present in the data file. Consider the following alteration of the earlier code (alteration in bold):

Code Snippet CC2.7
 Scanner fileIn = new Scanner(nameFile);
 // . . .
 System.out.println(fileIn.nextLine());
 System.out.println(fileIn.nextLine());
 System.out.println(fileIn.nextLine());
 fileIn.close();
 // . . .

This extra attempt to read in from the file assumes that there are three names. As you will see later, this will
often cause an end- of- file exception to be thrown. In this case, the Scanner method .nextLine() will throw
a NoSuchElementException to indicate there was no more data to be read in:
Your Name
My Name
Exception in thread "main" java.util.NoSuchElementException: No line found
 at java.base/java.util.Scanner.nextLine(Scanner.java:1651)
 at com.javaforis.fileio.FileTest.main(FileTest.java:23)
Command execution failed.

CC2.1 Basics of File I/O in Java • 449

The first two file reads still work, though the third causes the exception to be thrown. You can use excep-
tion chaining to catch any exceptions not under the IOException family tree and keep the application from
crashing:

Code Snippet CC2.8
 // . . .earlier try block logic
}
catch (IOException ioex)
{
 System.out.println(ioex.toString());
}
catch (NoSuchElementException eofex)
{
 System.out.println("[End of File Reached!]");
}
catch (Exception ex)
{
 System.out.println(ex.toString());
}

The error occurs but now is caught and handled, and the program can continue executing additional logic.
Your understanding of the file’s contents and structure can help prevent errors like this.

Example usage— student grades: An additional example will help you understand the usage and behavior
of file I/O in Java better. Note that first this example will model a situation where you know ahead of time
how many records are contained within a data file. This is done first for learning purposes but is not a real-
world expectation! Following this, the example will be modified for the much more realistic scenario where
you do not know ahead of time how many records an incoming data file may contain.

Student grades— record quantity known ahead of time: Create a Java main() class application called
StudentData.java that does the following:

• Writes twenty student grades out to a text file called studentdata.txt. Each record will contain a test
name for a student (“Student 1,” “Student 2,” etc.) and a random exam grade between 40 and 100.

• The program will read in the twenty values from studentdata.txt back and calculate the minimum,
maximum, and average grades. It will print these statistics along with the name of the student that achieved
the minimum and maximum, respectively.

The first task is to set up the application for the write out to the file. This code will look like the following:

Code Snippet CC2.9
// in main()
String studentMinName = "";
String studentMaxName = "";
double minGrade = 100.0;
double maxGrade = 0.0;
double gradeAverage = 0.0;
int numOfLoops = 20;

try
{
 File studentData = new File("studentdata.txt");
 PrintWriter fileOut = new PrintWriter(studentData);

 // Write out 20 random grades to the file
 for (int i = 1; i <= numOfLoops; i++)
 {
 fileOut.print("Student " + i + " ");
 fileOut.printf("%.1f\n",40 + (Math.random() * 61)); // 40 to 100

450 • Companion Chapter 2 / File I/O in Java

 }

 fileOut.close();

 // File read in code will go here later

}
catch (IOException ioex)
{
 System.out.println(ioex.toString());
}
catch (NoSuchElementException eofex)
{
 System.out.println("[End of File Reached!]");
}
catch (Exception ex)
{
 System.out.println(ex.toString());
}

Notice that the writing of each record to the file happens in two lines: First the name “Student” is printed to
the file with the current loop iterator value added along with a space. In the next print, the .printf() method
of the PrintWriter class is used to format the randomly generated score to one decimal place before writing
it out to the file. Finally, an escaped new- line character is used in the format specifier (chapter 3) to ensure
the next record is printed to the next line in the file. Executing this code will generate the contents of the file
similar to this (yours may differ, since the grades are randomly generated):
Student 1 81.8
Student 2 80.6
Student 3 60.2
Student 4 82.8
Student 5 49.6
. . . some records omitted for brevity
Student 19 60.5
Student 20 78.2

The challenge here (and one you might face with real- world raw data) is the “name” of the student partially
consists of a number separated from the rest of the name by a space. If you remember, the Scanner methods
generally (except for .nextLine()) ignore blank spaces and new- line characters.

Since you want to find the minimum, maximum, and average values from this file, the pseudocode for this
logic and this know- record- quantity- ahead- of- time situation will look like this:
while loop count <= 20
 Read in student name
 Read in grade
 gradeAverage += grade // sum
 if grade < current minimum
 current minimum = grade
 minimum grade student name = student name
 if grade > current maximum
 current maximum = grade
 maximum grade student name = student name
end of loop
gradeAverage /= number of loops
print statistics

This is pretty good pseudocode, as it will probably be a line- for- line translation into actual Java code. One
implementation may look like this (add this code where the comment note was placed in the first half):

CC2.1 Basics of File I/O in Java • 451

Code Snippet CC2.10
 // . . .
 // File read in code
 Scanner fileIn = new Scanner(studentData);
 String currentStudent = "";
 double currentGrade = 0.0;
 for (int i = 1; i <= numOfLoops; i++)
 {
 // read in name and grade.
 currentStudent = fileIn.next() + " " + fileIn.nextInt();
 currentGrade = fileIn.nextDouble();

 // Build the sum
 gradeAverage += currentGrade;

 // Compare to minimum and maximum.
 if (currentGrade <= minGrade)
 {
 minGrade = currentGrade;
 studentMinName = currentStudent;
 }

 if (currentGrade >= maxGrade)
 {
 maxGrade = currentGrade;
 studentMaxName = currentStudent;
 }
 } // end of for loop

 // calculate average
 gradeAverage /= numOfLoops;

 // print statistics
 System.out.println("Student with highest grade of "
 + maxGrade + " was " + studentMaxName);
 System.out.println("Student with lowest grade of "
 + minGrade + " was " + studentMinName);
 System.out.printf("Average Grade Was: %.2f\n", gradeAverage);

If both halves of the code are run together (where the data being written and processed are those listed earlier),
then the output that occurs at the end of execution is as follows:
Student with highest grade of 98.6 was Student 11
Student with lowest grade of 44.2 was Student 12
Average Grade Was: 66.84

Figure CC2.5 visualizes how the first few lines of the for loop read in the data from the studentdata.txt
data file. The blank spaces between each “token” of data are ignored. The Scanner method .next() disregards
blank spaces and captures data as a String. Both .nextInt() and .nextDouble() attempt to treat the next
token of data to be read as the data types inherent
to these methods (int and double, respectively).
Since these three methods are invoked in this
order, each time a loop iterator occurs, the next
three tokens of data will be read from the file in the
same order.

Student grades— record quantity not known
ahead of time: What if you encounter a situation
where we are not sure how many records are found Figure CC2.5. Tokens of Data Read from studentdata.txt

Using Scanner Methods

452 • Companion Chapter 2 / File I/O in Java

within the file? This is the most common real- world situation! The code demonstrated so far will work then
too. Consider the following, where you can change one line of code in grade generation logic (in bold):
int numOfLoops = (int)(Math.random() * 50);

Now this code will generate a random quantity of student grade records between zero and fifty. For example,
the following are the file contents on another run:
Student 1 80.3
Student 2 94.3
Student 3 84.4
.. some records omitted for brevity
Student 10 46.2
Student 11 87.3

The following is the output statistics:
Student with highest grade of 95.3 was Student 6
Student with lowest grade of 41.0 was Student 9
Average Grade Was: 73.33

Notice that careful use of the Scanner class’s “next” methods allows you to read in plain- text data of any
type. PrintWriter’s implementation of the three print methods, including .printf(), is highly useful and
allows for precise control over the output written to the file.

SUMMARY POINTS

• Java has several classes for handling both plain-
text	and	binary-	formatted	I/O	activities.

• The File class allows the developer to create
basic	file	wrapper	objects	that	contain	the	file	
name and location.

• It is always a good idea to try to know as much
about	the	structure	and	contents	of	a	data	file	
as	possible	to	make	the	I/O	programming	task	
easier.

•	 The	absolute	path	of	a	file	is	the	fully	qualified	
location	of	the	file	on	a	disk	or	network	location.	
The	path	typically	starts	with	a	file-system	root	
element indicated.

• The relative path describes the location of a
file	in	relation	to	the	location	where	the	Java	
application executes.

• The PrintWriter class provides a convenient and
easy syntax for writing plain- text data out to a
file.	Its	constructor	can	use	a	reference	to	a	File
instance object or a String	containing	a	file	path.

• The Scanner class provides a convenient and
easy syntax for reading plain- text data in from
a	file	in	a	manner	similar	to	capturing	console-	
based user input.

•	 File	I/O	in	most	any	language,	including	Java,	
involves exception and error handling to some
extent	due	to	the	external	nature	of	files	and	the	
operating	system’s	file	system.

QUICK PROBLEMS

 1. Coding: Write a small program that writes ten
numbers	 out	 to	 a	 file.	 Have	 the	 program	 read	
those numbers back in and report the largest to
the console.

 2. Think:	What	is	the	benefit	of	being	able	to	store	
data	in	plain-	text	files?

 3. Coding:	 Write	 a	 small	 program	 that	 stores	 five	
names in a String[] array. Randomly choose from
those	names	ten	times,	and	write	them	out	to	a	
plain-	text	file.

CC2.2 Working with Binary File Data • 453

CC2.2 Working with Binary File Data
Binary is the language of technology. Whether you know it or not, you are communicating with your friends,
family, faculty, employer, and more in binary as you use technology. When the binary data reaches you or your
recipient, it is translated, or encoded, into a plain- text character format that is human readable. This translation
happens also in the context of the target recipient’s operating system, language, culture, and so on. Instead of
trying to manually format data according to the target recipient’s
language and context, data is stored in a binary format, and the
translation is performed by their platform/language/technology. With
today’s technology, this adds a negligible but noticeable level of
processing and resource usage. This makes data encoded into binary
highly portable. Indeed, this is why Java classes, when compiled, are
stored in binary: Java is a run- anywhere language, and the formatting
of Java classes into binary makes this portability possible. Each plat-
form can interpret the binary data in a manner that works best for it.

Java provides several classes to allow the
developer to write out and read in binary data
from files. This can be useful, as many applica-
tions expect data input to occur in binary and,
the reverse, may only write out data in a binary
format that your application will need to use.
Figure CC2.7 shows the inheritance relationship
of some of these binary data classes that will be
the focus of this section.
InputStream and OutputStream serve as the

base classes for the two branches, respectively.*,†
These two base classes define most of the
core methods that allow their subclasses to read
and write from binary files. InputStream and
OutputStream themselves do not work directly with files, but they lay the groundwork for binary I/O from/
to any stream of data. The FileInputStream and FileOutputStream subclasses specifically target a file for
binary I/O.‡,§ These classes can only convert integers and bytes back and forth into and out of files. The other
classes, such as DataInput[Output]Stream and ObjectInput[Output]Stream, will use
FileInput[Output]Stream as the “wrapper” for information on and access to a file, similar to how the File
class works. This class hierarchy is also a great demonstration of the beauty of class inheritance: each subclass
extends the abilities of its superclass into a more specific, targeted context.

File I/O with binary data: The most basic of the three classes, FileInput[Output]Stream, specifically
handles connections to files. The constructor for these two classes can take a File instance object, similar to
PrintWriter and Scanner discussed earlier in this chapter, or a String that contains the file path and name
of the target file. Importantly, the FileInput[Output]Stream class has several overloaded versions that allow
the developer to specify a boolean append parameter so that files can be added to instead of overwritten
in output activities. Unlike the File class, though, FileOutputStream has the ability to both create the file
and write binary data to it. Consider the following example in a new Java main() class application (the same
import statements from earlier in the chapter still apply):

* https:// docs .oracle .com/ en/ java/ javase/ 17/ docs/ api/ java .base/ java/ io/ InputStream .html.
† https:// docs .oracle .com/ en/ java/ javase/ 17/ docs/ api/ java .base/ java/ io/ OutputStream .html.
‡ https:// docs .oracle .com/ en/ java/ javase/ 17/ docs/ api/ java .base/ java/ io/ FileInputStream .html.
§ https:// docs .oracle .com/ en/ java/ javase/ 17/ docs/ api/ java .base/ java/ io/ FileOutputStream .html.

Figure CC2.6.	Binary	Data	Is	a	Highly	Portable,	
Often Encoding- Free Data Format

Figure CC2.7.	Inheritance	Hierarchy	of	Selected	Binary	Input/Output	
Classes

454 • Companion Chapter 2 / File I/O in Java

Code Snippet CC2.11
try
{
 // Create a binary file in .dat format
 FileOutputStream binaryOut = new FileOutputStream("data.dat");

 // Write out 10 int values
 for (int i=0;i<10;i++)
 {
 binaryOut.write(i);
 }

 // Close the connection
 binaryOut.close();

 // Input code will go here. . .
}
catch (IOException ioex)
{
 // Handle an IO exception
}
catch (Exception ex)
{
 // Handle a general exception
}

Notice that the FileOutputStream constructor can use either a File instance object or a String with
a file path. In this case, a String with a relative file path is used. When this code executes, a binary file
with the “.dat” extension is created (a common extension for binary data files). Since a relative file path is
used, the file is created in the Java project directory as shown in figure CC2.8. Figure CC2.8 also shows what
is visible when the binary file is opened both in your IDE’s text editor (figure CC2.8 shows this for Apache
NetBeans, but it will look similar in other IDEs
such as Eclipse) and in the operating system
when the raw binary data is viewed. Notice that
each software attempts to display the binary data
in a format that makes sense to it. Though you
cannot read it, the binary data is readable by
other Java programs.

The FileInputClass can convert the raw
binary data back into int values so it can be dis-
played or used:

Code Snippet CC2.12
// . . .
// Input code will go here. . .
FileInputStream binaryIn = new FileInputStream("data.dat");

for (int i=0;i<10;i++)
{
 System.out.print(binaryIn.read() + " ");
}

binaryIn.close();
// . . .

When executed, this code will print the following to the console:
0 1 2 3 4 5 6 7 8 9

Figure CC2.8.	Viewing	the	Raw	Binary	Data	in	an	IDE	and	a	General	
Text Editor

CC2.2 Working with Binary File Data • 455

The “data.dat” file that already exists can be appended to each time it is opened and written to. By adding
the following true to the FileOutputStream constructor in the write- out / read- in example, appending will
occur with the file each time the application is executed:

Code Snippet CC2.13
// Create a binary file in .dat format
FileOutputStream binaryOut = new FileOutputStream("data.dat", true);

To see this in action, you will need to modify the input loop in the following way:

Code Snippet CC2.14
int readInValue = 0;
while (true)
{
 readInValue = (int)binaryIn.read();
 if (readInValue == - 1)
 {
 binaryIn.close();
 break;
 }
 System.out.print(readInValue + " ");
}

Several things have changed here: Now the value from the binary file is read directly into an int variable. The
.read() method of the FileInputStream class will return a “- 1” when the end of the file has been reached.
If a - 1 is returned, the connection is closed and while loop ended. The output from this after three runs will
look like the following:
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Another example is the storing of text data in byte form within a file:

Code Snippet CC2.15
try
{
 // Create a binary file in .dat format
 FileOutputStream binaryOut =
 new FileOutputStream("text.dat");

 // Write out some text
 String authorName = "Your Author";
 byte[] byteArray = authorName.getBytes();
 binaryOut.write(byteArray);

 // Close the connection
 binaryOut.close();

 // . . .
 // Input code will go here. . .
 FileInputStream binaryIn =
 new FileInputStream("text.dat");

 int readInValue = 0;
 while (true)
 {
 readInValue = (int)binaryIn.read();
 if (readInValue == - 1)
 {
 binaryIn.close();
 break;

456 • Companion Chapter 2 / File I/O in Java

 }
 System.out.print((char)readInValue);
 }
}
catch (IOException ioex)
{
 // Handle an IO exception
}
catch (Exception ex)
{
 // Handle a general exception
}

Executing this code will output the following to the console:
Your Author

Binary file I/O with primitive data types: The DataOutputStream and DataInputStream classes allow you
to work with other primitive data types without having to manually perform the conversion into byte values as
was done earlier.*,† The DataInputStream class also has methods that can explicitly throw the EOFException that
allows us to watch for the end of the file better than checking for a certain value. The DataOutput[Input]Stream
classes have various methods— the common ones of
which are detailed in table CC2.2— that work with primi-
tive data types.

The methods ending in “UTF” deal with conver-
sion to and from a portable Unicode character format
and help convert String values into binary. You can
use these methods easily. The constructors for both
of these classes require an instance object of either
Input[Output]Stream (the base classes) or one of their
subclasses. For example, the DataInputStream con-
structor will accept a reference to a FileInputStream
instance object, which itself stores information on the
location and name of the binary file to be interacted
with.

Earlier in the chapter, you generated random grades
for randomly named students. The same can done in a
binary output file:

Code Snippet CC2.16
int numOfStudents = 20;

try
{
 FileOutputStream binaryOut =
 new FileOutputStream("studentdata.dat");
 DataOutputStream studentOut =
 new DataOutputStream(binaryOut);

 for (int i=1; i<numOfStudents; i++)
 {
 studentOut.writeUTF("Student");
 studentOut.writeInt(i);
 studentOut.writeDouble((40 + (Math.random() * 61)));

* https:// docs .oracle .com/ en/ java/ javase/ 17/ docs/ api/ java .base/ java/ io/ DataOutputStream .html.
† https:// docs .oracle .com/ en/ java/ javase/ 17/ docs/ api/ java .base/ java/ io/ DataInputStream .html.

Table CC2.2. I/O Methods of the DataInputStream and
DataOutputStream Classes

Data type DataInputStream DataOutputStream

int .readInt() .writeInt(int i)

char .readChar() .writeChar(char c)

boolean .readBoolean() .writeBoolean(boolean b)

long .readLong() .writeLong(long l)

short .readShort() .writeShort(short s)

double .readDouble() .writeDouble(double d)

float .readFloat() .writeFloat(float f)

String .readUTF() .writeUTF(String str)

CC2.2 Working with Binary File Data • 457

 }

 studentOut.close();
 binaryOut.close();

 FileInputStream binaryIn = new FileInputStream("studentdata.dat");
 DataInputStream studentIn = new DataInputStream(binaryIn);

 for (int i=1; i<numOfStudents; i++)
 {
 System.out.print(studentIn.readUTF() + " " + studentIn.readInt());
 System.out.printf("\t%.2f\n", studentIn.readDouble());
 }

 studentIn.close();
 binaryIn.close();

}
catch (IOException ioex)
{
 // Handle an IO exception
}
catch (Exception ex)
{
 // Handle a general exception
}

Executing this code produces the following output:
Student 1 49.47
Student 2 54.17
. . .some records omitted for brevity
Student 18 64.48
Student 19 75.54

Notice that in the section of the code, the file is written out so that blank spaces, tabbing, or new- line charac-
ters are not a concern. Java handles the binary encoding of this data and knows where each token of data ends
and the next begins. The use of the various .read___() methods helps handle this for the developer as well.

How would you modify this in the more realistic scenario where the number of records of data in the file is
not known ahead of time? The .read___() methods of DataInputStream will throw an EOFException that
will catch when the end of the data file has been reached in our code. You can modify our example like so:

Code Snippet CC2.17
int numOfStudents = 20;

// Use a Try- With- Resources
// Autocloses file connections
try (
 FileOutputStream binaryOut =
 new FileOutputStream("studentdata.dat");
 DataOutputStream studentOut =
 new DataOutputStream(binaryOut);
 FileInputStream binaryIn =
 new FileInputStream("studentdata.dat");
 DataInputStream studentIn =
 new DataInputStream(binaryIn);
)
{

 for (int i=1; i<numOfStudents; i++)

458 • Companion Chapter 2 / File I/O in Java

 {
 studentOut.writeUTF("Student");
 studentOut.writeInt(i);
 studentOut.writeDouble(
 (40 + (Math.random() * 61)));
 }

 studentOut.close();
 binaryOut.close();

 while (true)
 {
 System.out.print(
 studentIn.readUTF() + " " + studentIn.readInt());
 System.out.printf(
 "\t%.2f\n", studentIn.readDouble());
 }
}
catch (EOFException eofex)
{
 System.out.println("[End of Student Data File Reached!]");
}
catch (IOException ioex)
{
 // Handle an IO exception
}
catch (Exception ex)
{
 // Handle a general exception
}

In this example, you convert the try…catch to a try- with- resources block, where the file resources you want
to close are declared and initialized in the header of the try itself. This technique will automatically close the
file resources when done (notice the calls to .close() are gone in the new code as well). The end- of- file
exception catch has been added, and a message prints letting the user know that all data has been read:
Student 1 84.48
Student 2 99.87
Student 3 67.73
. . .some output omitted for brevity
Student 17 92.02
Student 18 47.35
Student 19 55.76
[End of Student Data File Reached!]

Binary file I/O with complex data types: ObjectOutputStream and ObjectInputStream classes are very
useful: they allow a developer to save actual complex data- type objects to a binary file.*,† This can come in handy
and prevent the need for a lot of tedious logic that might have to extract data from objects and write them
out one by one. First, consider this example of saving an array and the contents of an ArrayList (companion
chapter 5) to a binary file using the DataOutputStream class:

* https:// docs .oracle .com/ en/ java/ javase/ 17/ docs/ api/ java .base/ java/ io/ ObjectOutputStream .html.
† https:// docs .oracle .com/ en/ java/ javase/ 17/ docs/ api/ java .base/ java/ io/ ObjectInputStream .html.

CC2.2 Working with Binary File Data • 459

Code Snippet CC2.18
try
{
 int[] numArray = {3,4,2,4,6,3,0,8,9};
 ArrayList<Integer> intArray = new ArrayList<>();
 intArray.add(5);
 intArray.add(9);
 intArray.add(11);

 FileOutputStream fileOut = new FileOutputStream("arrays.dat");
 DataOutputStream arraysOut = new DataOutputStream(fileOut);

 for (int num: numArray)
 arraysOut.writeInt(num);

 for (Integer num: intArray)
 arraysOut.writeInt(num);

 fileOut.close();
 arraysOut.close();

 // Read in array code here
}
catch (EOFException eofex)
{
 System.out.println("[End of Student Data File Reached!]");
}
catch (IOException ioex)
{
 // Handle an IO exception
}
catch (Exception ex)
{
 // Handle a general exception
}

Two for loops are defined to traverse each array and write out their int and Integer values. If the regular
int[] array had any empty locations (with default value 0 in them), you would have to consider whether or
not the 0 values should be written out as well.

Now the real problem: If this application (or another Java application) needs to read these back in, and the
number of elements that should belong to each array is unknown, how do you tell where one array ends and
the other begins? This is a real head- scratcher! It would be great if there was a way to save the arrays into a
file directly and preserve their array structure so that the start and finish of each were also preserved. The
ObjectOutput[Input]Classes let you do just that. Modify this example like so (changes in bold):

Code Snippet CC2.19
try
{
 int[] numArray = {3,4,2,4,6,3,0,8,9};
 ArrayList<Integer> intArray = new ArrayList<>();
 intArray.add(5);
 intArray.add(9);
 intArray.add(11);

 FileOutputStream fileOut = new FileOutputStream("arrays.dat");
 ObjectOutputStream arraysOut = new ObjectOutputStream(fileOut);

 arraysOut.writeObject(numArray);

460 • Companion Chapter 2 / File I/O in Java

 arraysOut.writeObject(intArray);

 fileOut.close();
 arraysOut.close();

 // Read in array code here
 int[] fileNumArray;
 ArrayList<Integer> fileIntArray;

 FileInputStream fileIn = new FileInputStream("arrays.dat");
 ObjectInputStream arraysIn = new ObjectInputStream(fileIn);

 fileNumArray = (int[])arraysIn.readObject();
 fileIntArray = (ArrayList<Integer>)arraysIn.readObject();

 arraysIn.close();
 fileIn.close();

 for (int num: fileNumArray)
 System.out.print(num + " ");

 System.out.println();

 for (Integer num: fileIntArray)
 System.out.print(num + " ");

 System.out.println();

}
catch (EOFException eofex)
{
 System.out.println("[End of Student Data File Reached!]");
}
catch (IOException ioex)
{
 // Handle an IO exception
}
catch (Exception ex)
{
 // Handle a general exception
}

When this code runs, the following will print to the console:
3 4 2 4 6 3 0 8 9
5 9 11

The ObjectInput[Output]Stream classes have available all the classes used with the
DataInput[Output]Stream class with one key addition:

CC2.2 Working with Binary File Data • 461

Code Snippet CC2.20
void .writeObject(Object o) // ObjectOutputStream
Object .readObject() // ObjectInputStream

Recall that the Object class is the top- level definition for all classes in the Java library. The writing out and
reading of objects, up- converted to Object, ensures that these I/O classes can be used with object data types
that may not even exist yet in addition to all those that currently do. Notice in the code that a cast operator is
used to convert the read in Object data type back to the array data type desired. Notice as well that you did not
need to know anything about the size or contents: all that structure was saved into the binary file and preserved.

Java file I/O and user- defined classes: You can use these I/O classes with user- defined classes (ones we
create) as well. For example, consider class Person defined in chapter 9. Each instance object of Person will
store several pieces of data on each individual, and these are of various data types. Import the Person class
from chapter 9 into your current project (or see the code listing there to type it in if you have not created it),
and consider the following code that creates a small array of Person objects:

Code Snippet CC2.21
 ArrayList<Person> roster = new ArrayList<>();
 Person temp = new Person("Blue",70,23,"Suzie",150000);
 roster.add(temp);
 temp = new Person("Green",71,22,"Brianna",151000);
 roster.add(temp);

Instead of traversing the ArrayList<E> and accessing the data fields (or accessor methods) for each Person
object, you can simply write the entire ArrayList<E> object out to the file! The following code accomplishes
this (Note: output prints for the other Exception catch statements have been added):

Code Snippet CC2.22
try
{
 ArrayList<Person> roster = new ArrayList<>();
 Person temp = new Person("Blue",70,23,"Suzie");
 roster.add(temp);
 temp = new Person("Green",71,22,"Brianna");
 roster.add(temp);

 FileOutputStream fileOut =
 new FileOutputStream("personroster.dat");
 ObjectOutputStream personOut =
 new ObjectOutputStream(fileOut);

 personOut.writeObject(roster);

 fileOut.close();
 personOut.close();

 FileInputStream fileIn =
 new FileInputStream("personroster.dat");
 ObjectInputStream personIn =
 new ObjectInputStream(fileIn);

 ArrayList<Person> newRoster =
 (ArrayList<Person>)personIn.readObject();

 for (Person p: newRoster)
 System.out.println(p.toString());

}
catch (EOFException eofex)

462 • Companion Chapter 2 / File I/O in Java

{
 System.out.println("[End of Student Data File Reached!]");
}
catch (IOException ioex)
{
 System.out.println(ioex.toString());
}
catch (Exception ex)
{
 System.out.println(ex.toString());
}

When this code is executed, an error occurs!
java.io.NotSerializableException: com.javaforis.fileio.Person

For the instance objects of complex data types and classes to be eligible for storage in a binary file, the defi-
nitions of those classes (the CDF) must specify that the class implements the Serializable interface (see
companion chapter 4 for more information on interfaces in Java). The Serializable interface has no abstract
methods that must be overridden. A class that implements it will have its basic structure summarized when
its instance objects (and their data) are written out to a binary file. The class must be symbolically resolvable
too (through either import or inclusion in your project) to read them in from a binary file.

To get the code working, the header for the imported Person class will need to be modified:

Code Snippet CC2.23
import java.io.*; // Contains definition for Serializable

public class Person implements Serializable {
// . . .

The program will now execute and print the following to the output console:
Name: Suzie, age: 23
Name: Brianna, age: 22

Writing out one array that stores references to multiple complex data- type objects is a lot easier than tediously
traversing the data fields for each and writing them out one by one. Java’s I/O classes handle the structure of
the objects and the structure of their data for you. Simply specify if any of your custom, user- defined classes
implement the Serializable interface, and their instance objects will be writable (and readable) from binary
files. Handy for transporting complex objects to Java applications across platforms.

SUMMARY POINTS

•	 Binary	data	is	much	more	portable	than	plain	
text,	as	it	allows	receiving	platforms	and	
software to choose how to encode it for view or
usage.

•	 Java	divides	its	binary	I/O	classes	into	two	
difference	hierarchies:	input-		and	output-	focused	
classes.

• The InputStream class is the base class for
all	input-	focused	binary	I/O	classes,	and	the	
OutputStream class is the base for all output-
focused	binary	I/O	classes.

• The FileOutputStream class acts in a similar
fashion to the base nature of the File class for
plain-	text	I/O.	FileOutputStream handles the

low- level encoding into binary and writing directly
to	the	binary	files.	FileInputStream can read
bytes	in	from	a	binary	file.

• The DataOutputStream class allows the writing
out	of	the	Java	primitive	data	types	to	a	binary	file	
via a FileOutputStream object. DataInputStream
uses a FileInputStream object to read bytes in
from	a	binary	file	and	convert	them	back	to	the	
appropriate primitive data types.

• For classes and complex data types that have
implemented the Serializable	interface,	
ObjectOutputStream can store complex objects
directly	in	binary	data	files.	ObjectInputStream
can read them back out.

CC2.2 Working with Binary File Data • 463

QUICK PROBLEMS

* https:// docs .oracle .com/ en/ java/ javase/ 17/ docs/ api/ java .base/ java/ io/ FileWriter .html.
† https:// docs .oracle .com/ en/ java/ javase/ 17/ docs/ api/ java .base/ java/ io/ BufferedInputStream .html.
‡ https:// docs .oracle .com/ en/ java/ javase/ 17/ docs/ api/ java .base/ java/ io/ BufferedOutputStream .html.

 1. Coding: Write a small program that writes the mul-
tiplication	table	out	to	a	binary	file.	Store	the	“#	x	#”	
(where the # represents zero through nine) along
with	the	answer	on	each	line.	Have	the	program	
read all the records back in and display them on
the console.

 2. Think:	What	benefits	are	there	to	writing	a	complex	
object	out	to	a	binary	file?

 3. Coding: Store the results of the multiplication table
in a two- dimensional array. Write this array out to a
binary	file	and	then	read	it	back	in	and	display	the	
results	to	the	console,	with	the	appropriate	multipli-
ers along the top row and left column.

Summary
In	this	chapter,	you	have	explored	the	very	basics	
of	working	with	file	I/O	in	Java.	Several	other	 I/O	
classes	and	topics	have	been	excluded	for	brevity,	
but you are invited to research how to use them. For
example,	 the	FileWriter class provides a conve-
nient set of overloaded constructors to allow easy
appending	of	data	to	plain-	text	data	files,	similar	to	
the constructors of the FileOutputStream class.* The
BufferedInputStream and BufferedOutputStream
allow	you	to	write	out	to	the	computer’s	memory	first	
and	then	write	to	disk,	often	increasing	application	

efficiency	and	reducing	disk	usage	in	large,	scaled	
applications.†,‡ Now that you have a basic grasp of
how to work with both plain- text and binary data
files,	you	can	accomplish	a	great	deal	of	common,	
information-	intensive	tasks:	enabling	data	save	and	
data	backup	in	applications,	creating	data	files	for	
other	applications	to	process,	publishing	the	program-
matic	analysis	of	data	to	an	open	scientific	commons,	
and so on. There is a lot you can now accomplish
with	file	I/O	in	Java!

Practice Problems
Terminology
Match	the	following	terms	from	the	chapter	with	their	most	appropriate	definition:

 1. I/O a. View of the actual location, arrangement, and directory structure of files in the file system.

 2. Files b. A character, symbol, or group of either that precedes a relative file path, further indicating the nature
of the relative location indicated.

 3. File class c. Data format that is highly portable between platforms and easily translatable by various platforms
and software.

 4. Absolute path d. Java class that provides basic binary output capabilities, writing out byte and int values. Serves as
the “file wrapper” for the other binary I/O classes.

 5. Relative path e. A relative file path prefix that indicates the location in a directory immediately superior to the
currently executing directory. These prefixes can be chained to indicate a directory quantity superior
to the current.

 6. Root element f. A form of the try…catch statement where external resource links are defined in the try header and
connections to these external resources are closed automatically when the program terminates.

 7. Prefix g. Java class that provides basic, plain- text output to files.

 8. ./ h. Java interface that allows instance objects of classes to be stored in binary files.

464 • Companion Chapter 2 / File I/O in Java

 9. ../ i. Java class that provides the ability to write both primitive data types and complex data- type objects
out to files in binary format.

 10. Physical file view j. Base class of all Java classes by either direct or indirect inheritance.

 11. Logical file view k. File path that specifies the name and location of a file that is related to the location where an
accessing program is executing.

 12. PrintWriter class l. Java class that serves as the base class for all output- focused I/O classes.

 13. Exception handling m. Constructor parameter option for the FileOutputStream class enabling the adding of data to a
preexisting file’s contents rather than overwriting them.

 14. Try- with- resources
block

 n. Structures that are external to an application, usually located on a hard drive, portable drive, or
networked/cloud location. Offers a more long- term means of data storage.

 15. Binary file data o. The first, or base, location of a file path.

 16. FileOutputStream p. File path that fully specifies the location of a file.

 17. DataOutputStream q. A relative file path prefix that indicates the location starts in the local, executing directory.

 18. ObjectOutputStream r. A view of the relationship between files and directories that may not be physically structured or
closely colocated.

 19. OutputStream s. Technique where common errors that could occur during program execution are “caught” and
“handled” to ensure application stability.

 20. Object t. Acronym for input/output. Usually refers to the file, data, or network activities (among others) of an
application or system.

 21. Append to file u. Java class that provides the ability to write primitive data types out to files in a binary format.

 22. Serializable v. Java class that provides a basic “wrapper” storing information on files such as name and file path.

Find the Error
In the following single- code listing,	carefully	examine	the	code	given,	and	determine	the	error(s)/issue(s)	with	
each.	Keep	in	mind,	the	error(s)	could	be	syntax	(code)	or	logic	(intended	outcome)	based	or	both!

For	the	following	problem,	assume	all	necessary	imports	have	been	made	and	that	the	code	is	located	within	an	
application’s main()	method.	Also,	assume	the	application	is	reading	from	a	binary	file	called	“weatherdata.dat”
that	contains	weather	observations,	with	an	unknown quantity of records for one year with data in the following
format:

DayOfMeasurement MonthOfMeasurement MaxTemperature MaxWindSpeed Humidity%

The	application	has	been	tasked	with	the	following	requirements:

• Report the average max temperature for each month.
• Report the average max windspeed for each month.
• Report the average humidity for each month.

The	file	is	already located in the application’s local directory. A (plain- text) example of the data would look
like	the	following:

5 1 92.2 3.4 35
6 1 91.0 2.2 69
. . .
123 4 56.1 14.5 15
124 4 58.8 1.1 80
. . .

File weatherData = new File("../weatherdata.dat");

CC2.2 Working with Binary File Data • 465

Scanner fileIn = new Scanner(System.in);

while (true)
{
 fileIn.nextInt();
 fileIn.nextInt();
 fileIn.next(int);
 fileIn.nextDouble();
 fileIn.nextInt();
}

int day = fileIn.nextInt();
int month = fileIn.nextInt();
for (int i=0;i<=12;i++)
{
 monthAverage =
 (int maxTemperature = fileIn.readDouble()) / 12;
 monthAverage =
 (double maxWindSpeed = fileIn.readDouble()) / 365;
}

DataOutputStream fileOut =
 new DataOutputStream(
 new FileOutputStream("results.dat"));
fileOut.writeDouble(monthAverage);
fileOut.writeDouble(monthWindSpeedAverage);
fileOut.close();

System.out.println(
 "Average Temperature: " fileOut.readDouble());
System.out.println(
 "Average Windspeed: " + fileOut.readDouble());
System.out.println(
 "Average Humidity: " + fileOut.readDouble());

try
{
 fileOut.close();
}
catch (Exception ex)
{
 fileOut.close();
}

Think about It
	 1.	 What	 is	the	main	difference	between	a	file	with	

plain- text data and one with binary- formatted
data?

 2. What are three things you should know about a data
file	before	working	with	it	programmatically?

	 3.	 What	is	the	difference	between	an	absolute	file	path	
and	a	relative	file	path?

	 4.	 Describe	the	use	of	the	root	element	in	a	file	path.	Is	
it	needed	for	absolute	file	paths,	relative	file	paths,	
or both?

 5. Why is escaping characters sometimes necessary
in	a	file	path	String	value?

 6. What is the main purpose of the File class?
 7. What are two different directory references for a

relative	file	path?	How	do	you	use	them?
	 8.	 Why	do	data	files	created	by	your	code	not	show	

up in an IDE’s logical view of a Java project but
instead	in	its	physical	file	view?

 9. What are some of the more common methods of
the	File	class,	and	what	do	they	do?

466 • Companion Chapter 2 / File I/O in Java

 10. Describe the primary usage of the PrintWriter
class. Is it used more for binary data or plain- text
data?

 11. Describe how the Scanner class can be used for
more than just console input.

	 12.	 Why	must	most	file	I/O	code	in	Java	and	other	
programming languages watch for and handle
exceptions?

 13. What happens when you try to view the contents
of	a	binary	file	manually?

 14. Describe why storing data in a binary format can
provide	benefits	to	programmers.

 15. Describe the inheritance hierarchy of the Java
binary	I/O	classes.

	 16.	 Which	of	the	Java	binary	 I/O	classes	can	write	
primitive data types like double,	float,	and	short
to	a	binary	file?

 17. What is the best way to read in a String value from
a	binary	file?	Is	there	more	than	one	way?

 18. Why must there be a type conversion when working
with	complex	data-	type	objects	and	binary	files?	
When must this type conversion occur?

 19. What must be adjusted in a class to enable its
instance	objects	to	be	written	to	a	binary	data	file?

 20. What are several ways to handle reaching the end
of	a	data	file	during	read	activities?

Short Syntax Problems
 1. Write a small program that accepts inputs from

the	console	of	a	student’s	name	(first	and	second),	
GPA,	and	major.	In	a	loop,	write	this	record	out	to	a	
plain-	text	file	ten	times.	Make	sure	each	record	is	
on its own line.

 2. Write a small program that accepts inputs from
the	console	of	a	student’s	name	(first	and	second),	
GPA,	and	major.	In	a	loop,	write	out	each	entered	
record	to	a	binary	file.	Use	the	appropriate	binary	
I/O	class	so	that	if	the	application	is	exited	and	then	
executed	again,	new	records	are	appended	to	the	
same	file.

 3. Find a long block of plain text from a website or
file	of	your	choice.	Copy	and	paste	it	into	a	plain-	
text	file,	and	save	it	into	your	project	as	a	local	file.	
Write a small program that will read in each word
separately,	then	count	the	vowels.	The	program	will	

count	all	the	vowels	in	every	word	in	the	file	and	
then at the end report the count for each (include
the English character y in your count).

	 4.	 Create	a	small	program	that	fills	a	size	10 int array
with random numbers between 0 and 100. Append
the	entire	array	 into	a	binary	file	each	time	you	
run the application. Write a second small program
that will read in all the arrays present in the same
binary	file	and	print	their	contents	to	the	console.

 5. Write a small program that will accept inputs for
grocery store inventory items from the console and
write	them	out	to	a	binary	file.	The	information	will	
include	the	item	name,	price,	quantity	in	stock,	and	
general description. The application will loop until
a menu option is chosen to quit.

 a. Added challenge: Use the InventoryItem class
from	chapter 8.

Full Problems
 1. Write a Java program called StockMarket.java

that will allow a user to perform the following
tasks:

 a. The user can enter the information for a busi-
ness’s	stock	(i.e.,	security).	The	information	will	
include	the	stock’s	ticker	symbol,	the	business	
name,	and	the	stock’s	most	recent	price	at	the	
close	of	trading	day:

	 i.	 Have	the	application	write	this	out	to	a	file	
called stockdata.txt.

	 ii.	 Include	a	way	for	the	user	to	loop,	entering	
new	stocks	until	they	are	finished.

	 b.	 The	user	can	then	enter	their	portfolio:
 i. Prompt the user to choose from one of the

stocks listed in stockdata.txt.

	 ii.	 Have	them	enter	a	quantity	purchased.
	 iii.	 Have	them	enter	a	purchase	price	(which	

could differ from the most recent closing
price).

 iv. Store this information in a file called
userportfolio.dat (notice the .dat exten-
sion:	use	the	appropriate	code	to	write/read	
from	a	binary	file!).

 v. Include a way for the user to loop and enter
multiple	owned	stocks,	giving	them	a	way	to	
finish	when	done.

	 c.	 Finally,	report	on	the	user’s	gains	or	losses	in	
their	portfolio:

	 i.	 For	each	stock	in	the	user’s	portfolio,	take	the	
stock’s	most	recent	price,	and	subtract	from	it	

CC2.2 Working with Binary File Data • 467

the purchase price. Multiply this by the owned
quantity. This will be the user’s unrealized
gains/losses	per	stock.	Print	this	information	
for each stock in the user’s portfolio.

	 ii.	 Report	the	total	unrealized	gain/loss	for	the	
entire portfolio before allowing the applica-
tion to close.

 2. Implement a fully functional version of the weather
observation problem detailed in the “Find the Error”
section earlier in this chapter. Take the following
steps:

	 a.	 First,	write	a	small	program	that	will	generate	
random	 data	 for	 the	 MaxTemperature,	 Max-
WindSpeed,	and	Humidity	(within	reasonable	
value ranges). Generate a random number of
observations between three hundred and one
thousand days’ worth. Increment the month
every thirty days.

	 b.	 Second,	write	an	error-	free	version	of	the	applica-
tion that will read in the data as structured from
the	data	file	and	report	the	required	statistics:

 i. Average MaxTemperature for each month
 ii. Average MaxWindSpeed for each month
	 iii.	 Average	Humidity	for	each	month

Ensure that the month number is reported along
with each average.

 3. Write a program that will prompt a user for their
full	name	(first	and	last)	and	a	quantity	of	time	

they would like a loop to print their name to the
console.	Then	in	a	plain-	text	file,	your	application	
should write out all the appropriate syntax for an
actual Java program that will loop and print the
user’s name to the console. Your program will be
writing the code for a program. Write out the class
header,	the	main	method	header,	and	the	code.	
Adjust the code dynamically so that the entered
username and the loop quantity are part of the
for	loop	you	write	to	the	plain-	text	file.	Be	sure	to	
give	your	plain-	text	file	the	extension	of	“.java.”

 a. Added challenge:	When	done,	open	the	file	in	
your IDE. Can you compile and run it?

 4. Modify the ManageInventory.java application writ-
ten	earlier	in	this	chapter	in	the	following	ways:

 a. Instead of the ArrayList<E> containing String
arrays,	 use	 the	 InventoryItem	 class	 from	
either	chapter 8	or	chapter 11	instead.	Have	
the ArrayList<E> contain InventoryItem class
instance objects. You’ll need to modify the
import,	 export,	 edit,	 and	 new	 entry	 logic	 to	
accommodate for this.

	 b.	 Add	a	“Profit	Report”	menu	option	where,	for	
each InventoryItem,	 the	 potential	 profit	 is	
reported if all the on- hand quantities of that item
were	sold	for	the	sale	price	(profit	=	what	it	sold	
for	–		what	was	paid	to	purchase	it	by	the	store).

	cc2

