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Recursion

What You Will Learn in This Chapter
Recursion is a powerful technique developed by com-
puter scientists and mathematicians that has many 
applications in programming. Recursion can provide 
simple and elegant solutions to often complex prob-
lems, which makes it a must- know technique for 
developers. Recursive problem- solving approaches to 
data management and search- related tasks, among 
others, can provide simple solutions that enable pow-
erful application functionality. For information sys-
tems professionals, becoming familiar with recursive 
techniques and approaches is highly important and 
will add to the set of programming tools available to 
the systems developer.

Specifically, this chapter will help you do the 
following:

 1. Understand what recursion is and the nature of 
the problems it can solve

 2. Understand how aspects of a programming lan-
guage like Java can enable the application of recur-
sive techniques

 3. Explore several basic uses of recursion to further 
clarify its nature and the adjustments to its applica-
tion that can occur when you run into problems

 4. Understand and apply recursion to several very 
practical information systems– related problems 
in the realm of data and file management

Opening Scenario
While collecting requirements and planning the sys-
tem and its functionality and through early project 
development efforts, you have worked closely with 
the members of your team focused on system opti-
mization. One team member, in an all- hands status 
update meeting, mentioned that “speed will be a 
noticeable characteristic of the system as they scale 
this across their multiple locations.” They have pored 
over source code with you, looking at uses of loops, 
large data structures like arrays, instantiation of 
objects, and any wasted space in memory, among 
other topics. Their goal has been to look for any 
planned or existing code that might slow the system 
down horribly. You are pleased that few inefficiencies 
have been found, and you think the client will be very 
happy with the functionality and speed of the first 
versions of the system. The optimization team mem-
bers have cautioned that one big area of concern will 
be the application’s ability to quickly sort and search 
items in its inventory: “All those point- of- sale termi-
nals, where employees will be hand- typing item 

names to search and floor managers will be looking 
up item codes to check inventory levels— there will 
be a lot of searching in this application!” The optimiza-
tion team members, concerned with too many calls 
to the database, which can add a lot of overhead, 
want to try to keep ranges of commonly referenced 
inventory in memory “to speed up both searches and 
any targeted analytics.”

After several discussions with the overall team, 
you have been asked to research and implement effi-
cient sorting of inventory in memory and the ability 
to search and find inventory information fast. After 
some time, you discover several techniques that have 
been used for both sorting and searching for infor-
mation. The computer science and mathematical 
literature states that the majority of these techniques 
use something called recursion to enable the speed 
and efficiency of the techniques that have caught your 
eye. “I’ll have to understand recursion as applied in 
a programming context before I can ensure speedy 
sorting and searching in a systems development 
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context,”	you	inform	the	optimization	team.	Luckily,	
it seems to be generalizable to any programming 
language	in	use	for	system	development,	including	

Java. One team member points you in the direction 
of	several	valuable	resources,	and	you	get	to	work	
learning	as	much	about	recursion	as	you	can . . .

CC3.1 Understanding Recursion
Basics of recursion: Recursion is a phenomenon that can be 

found all around you in nature, mathematics, language, food, 
insect behavior, and many other areas. Mathematicians and 
computer scientists have found that leveraging recursive 
techniques can solve many problems in elegant and highly 
efficient ways. Wherever a problem occurs and that prob-
lem can be broken down into smaller tasks that are similar 
in structure and content to the larger, overall problem, a 
recursive approach can be used to resolve it. For example,
Problem: Imagine one hundred people standing in line. 

You need to sort these people by their height, from 
smallest to largest.

Solution: You can either sort the entire line of one hun-
dred people all at the same time or divide the task. 
You might assign ten of your friends to each tackle the 
sorting of ten people in the line: your first friend sorts 
the first ten people, the second the next ten people, 
and so on. Finally, the groups of ten can be arranged 
to finish the whole sort.

Why recursion works here: The sorting of ten of those 
people works the same way, on the same “data,” as the 
sorting of all one hundred at once. This means that a 
recursive approach can be used. Recursion is handy in 
“divide and conquer,” where the operation that is per-
formed on all the data can be similarly performed on 
a small subset of the data too.

In software development, there are a few things to remember 
about recursion:

• Recursive techniques to problems are implemented in 
software by having a method invoke itself: As you have 
seen in Java, you can invoke a method from anywhere in your code (as long as the method name is symboli-
cally resolved and “visible” from your code). This works even from inside the method itself ! Your method’s 
own code can invoke itself. Consider this very simple example (we will do things the right way later):

Code Snippet CC3.1
public static void someMethod()
{
    // do some stuff. . .
 
    // Recursive self- invocation
    someMethod(); // Recursive self- invocation
}

Notice that the method invokes itself from within its own code body. This enables recursive approaches to 
problem- solving in programming (including Java!). Figure CC3.2 shows how the recursive method invocation 
chain looks in memory.

Figure CC3.1. Examples of Recursion Found in 
Nature and Mathematics

Sources: “Sunflower” by jon.roberts is licensed 
under CC BY- SA 2.0, https:// www .flickr .com/ photos/ 
20712950 @N00/ 4788459820; “File:Mandel zoom 00 
mandelbrot set.jpg” by Created by Wolfgang Beyer 
with the program Ultra Fractal 3 is licensed under CC 
BY- SA 3.0, https:// commons .wikimedia .org/ w/ index 
.php ?curid = 321973; “Snowflake 1” by ~Brenda- Starr~ 
is licensed under CC BY 2.0, https:// www .flickr .com/ 
photos/ 37753256 @N08/ 4420314547.

Figure CC3.2. Recursive Method Invocation Chain
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• Recursion is different from looping: Recall that a loop in Java (and any programming language) simply 
specifies a block of code that will be executed repeatedly. This is different from recursion, where the repeti-
tion happens due to method invocation, not code looping. In a loop, the code behaves the same way on 
each iteration, but with recursion, the code may act differently or act upon a different subset of data. 
Consider the following two methods that accept an int array as a parameter: one method loops while 
the other acts recursively (some code highlighted in bold):

Code Snippet CC3.2
// In main(). . .
int[] sortedArray = {1,2,3,4,5,6,7};
System.out.println(loopSearch(sortedArray, 3));
System.out.println(
        recursiveSearch(sortedArray,0,sortedArray.length,3));
 
. . .
 
// Static application class method
public static boolean loopSearch(int[] arr, int value)
{
    // loop
    for (int i = 0; i < arr.length; i++)
    {
        if (arr[i] == value)
            return true;
    }
 
    return false;
}
 
// Static application class method
public static boolean recursiveSearch(
        int[] arr, int start, int end, int value)
{
    int mid = ((start + end)/2);
 
    if (arr[mid] == value)
        return true;
    else
        if (arr[mid] < value)
            recursiveSearch(arr, start, mid, value);
        else
            recursiveSearch(arr, mid, end, value);
 
    return false;
}

Notice that no matter the length and contents of an array that you pass to loopSearch(), that method will 
act the same every single time: searching at the start until it finds (or doesn’t find) the value being searched 
for. The contents of the array will cause the method recursiveSearch() to act differently: it does not loop; 
it divides the array into two halves and invokes itself to search one or the other. Loops and recursion differ 
greatly. The loopSearch() method is only invoked once, while the recursiveSearch() method may be 
invoked many times per array.

• Logic must be used to determine when a method will stop recursively invoking itself: In Java, if a 
method recursively invokes itself, and that call then invokes itself again and so on, you will eventually run 
out of memory in the frame stack area of memory. In fact, if the code for someMethod() (from earlier) is 
executed, the following error occurs:

Exception in thread "main" java.lang.StackOverflowError
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A stack overflow (this term might be familiar to you if you frequently search for code examples online!) error 
occurs when the frame stack has so many method frames within (all from method invocations) that it runs out 
of its allocated memory. There’s lots of room in memory but not an infinite amount of it. Frequently, failing to 
include logic to stop a recursive method invocation “chain” will cause this. You will hear this stopping logic called 
a “base case,” “anchor case,” and “stopping case” in the programming literature. Consider the following adjust-
ment to our someMethod() method from earlier that introduces a base case into the recursion chain:

Code Snippet CC3.3
// in main()
someMethod(1);
. . .
public static void someMethod(int num)
{
    // Stopping Case
    if (num == 10)
        return;
 
    // Recursive self- invocation
    someMethod(++num);
    System.out.print(num + " ");
}

When this executes, the following prints to the console:
10 9 8 7 6 5 4 3 2

The stopping case in a recursive method is usually implemented with an if or an if…else decision statement.
• (Most) all problems that can be solved in an iterative fashion can be solved with a recursive approach: In 

the prior example, what did the recursion “chain” of method invocation do? It simply printed the numbers 
one through ten in reverse. Can this be done with a simple for loop? Of course:

Code Snippet CC3.4
for (int i=10; i>0; i- - )
{
    System.out.print(i + " ");
}

Notice that the recursive approach printed the same numbers as this traditional, more iterative for loop 
approach. But even though you can solve iterative problems with recursion, it does not always mean you should. 
When considering using recursion, consider the following two questions:

◦ Is the recursion version of the solution more or less elegant? Your recursion code may solve the 
problem, but it may overcomplicate the code, its maintenance, and the ability of other programmers to 
understand it.

◦ Is the recursion version of the solution more or less computing intensive? In the code example, the 
use of a for loop takes up much less memory (less “overhead”) than the recursive approach. Recall that 
each invocation of a method requires space to be allocated in memory, much more than with the use of 
a simple for loop. In applications that may scale very large across many users/systems, which approach 
would be faster? Sometimes recursion can speed up a task dramatically, and other times, it can slow it 
down or even stop the solution from being fully carried out.

• Recursive techniques work best when the problem at hand can be subdivided into smaller tasks that 
resemble the “whole”: This was stated earlier in this section. Notice with the number print example 
that the printing of a number sequence can be handled all at once with one for loop or “piecemeal” by 
each method invocation. The subtask looks like the whole task. When this symmetry exists, a recursive 
approach may work. Consider examples like sorting a line of people (discussed earlier), searching for one 
document in a file drawer containing thousands, or counting the number of files stored within a hierarchy 
of folders on a hard drive or cloud location.
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Simple examples of recursive approaches to solving problems in Java: Once you have identified a program-
ming problem that might benefit from a recursive technique, you will need to implement the code to apply 
it. Recursive programming requires you to adapt your thinking away from a brute- force iterative approach to 
a more segmented, divide- and- conquer one. First, we can examine a few simple examples of recursive pro-
gramming techniques and discuss whether recursion was a benefit or not in each. For a few of these, both the 
iterative and recursive approaches will be covered.

• Printing a number range from 0 up to num:
Iterative approach: Printing numbers from 0 to num is relatively straightforward using a for loop:

Code Snippet CC3.5
int num = 7;
for (int i=0;i<num;i++)
{
    System.out.print(i + " ");
}
System.out.println();

Notice that the printing of each individual number is handled on each iteration of the loop. The loop knows 
when to stop because the variable num is used in the loop- until condition.

Recursive approach: In order to use a recursive approach, keep a few things in mind:
◦ A method will be needed that can invoke (i.e., call) itself.
◦ Each number in this sequence will be printed once within a particular invocation of the method.
◦ A “base case” is needed so that the invocation chain stops, and the methods can all finish and leave memory, 

bringing execution back to the main() method.
◦ Because the method is calling itself, each invocation needs to be able to pass the prior num printed to the 

next invocation so that it knows what to print next.
You can assume that the number num will be passed to the method from whatever code invokes it to start 
the recursion chain. Your first attempt might look something like this:

Code Snippet CC3.6
public static void printIncreaseCount(int num)
{
    System.out.print(num + " ");
    printIncreaseCount(++num);
}

The method does invoke itself, which is the first step in applying recursion to the problem. The current value of 
num is printed, and then a pre- increment operator is used to increase it before passing it to the next invocation 
of printIncreaseCount(). The problem with this attempt is that a base case is missing: How do you stop 
the invocation chain from going into infinity (or a StackOverflowError)? Another problem here is that num 
is the value to stop printing at, not start at. A simple solution could look like the following (changes in bold):

Code Snippet CC3.7
public static void printIncreaseCount(int start, int num)
{
    if (start > num)
        return;
 
    System.out.print(start + " ");
    printIncreaseCount(++start, num);
}

Notice that each invocation of the method passes to the next the value of num, the value to stop at. The variable 
start is also incremented after printing it. The base case here is the check to see if the value of start has 
exceeded num. If so, you simply call return (for a void method, return can be called by itself, causing execution 
to leave the method).
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This logic can be additionally simplified:

Code Snippet CC3.8
public static void printIncreaseCount(int start, int num)
{
    if (start <= num)
    {
        System.out.print(start + " ");
        printIncreaseCount(++start, num);
    }
}

Instead of explicitly calling return, the if statement’s logic is flipped and only continues the recursive invoca-
tion if start is less than or equal to num. Invoking this from main() with the following:

Code Snippet CC3.9
printIncreaseCount(0, 7);

will produce the following output:
0 1 2 3 4 5 6 7

This works! But you are still not leveraging the full power that recursion provides. This implementation has to pass 
both the number to stop at and the number to start at. The original intent was to implement a recursive solution 
that prints numbers up from 0 always. Requiring the developer to pass in a 0 as the first parameter for each call is 
frustrating and a decrease in the elegance of the solution. Consider the following final version of this recursive method:

Code Snippet CC3.10
public static void printIncreaseCount(int num)
{
    if (num > 0)
        printIncreaseCount(num -  1);
 
    System.out.print(num + " ");
}

From your studies in chapter 6, you might remember a few characteristics of methods and primitive data types 
as parameters:

• Primitive data- type parameters are local to the method.
• Primitive data- type parameters receive a copy of a value from the argument passed to the method during 

the invocation.
Recall also from figure CC3.2 that recursive methods form a 
chain. Each prior method on that chain waits for the one it 
invoked to finish before it can finish (this is true of normal 
invocation between methods as well). With the number print, 
you leverage this fact in the following ways:

• The first invocation prints the largest number, the next 
prints the next smallest, and so on.

• The call to .print() only occurs after the recursive call 
to the next version of printIncreaseCount().

• When the value of num reaches 0, the base case has been 
“hit,” the recursive call does not happen further, and 0 is 
printed first to the console.

• The last method in the invocation chain finishes and leaves 
memory, and execution returns to the prior method in 
the chain, which executes its .print() and so forth back 
up the chain. See figure CC3.3 for an illustration of this. Figure CC3.3. Illustration of the 

printIncreaseCount() Chain
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Here, recursion works through the sequence in reverse, but printing starts with the last method called.

Displaying the Individual Digits in a Large Number
Iterative approach: The task here is to extract each individual digit from a larger number and print each 
number separately. Converting the number to a String and printing each character could work, but the use 
of division and the modulo operator will work better to accomplish this task:

Code Snippet CC3.11
long num = 186987; // Large number
long remainder;
String result = "";
while (num > 0)
{
    remainder = num % 10;
    num = (num / 10);
    result += remainder + "";
}
for (int i=result.length() -  1; i>=0; i- - )
{
    System.out.print(result.charAt(i) + " ");
}
System.out.println();

Notice the approach: First, the modulo operator is used to determine the remainder when dividing the whole 
number by 10. This yields a remainder of 7. The remainder is saved, and then the number is again divided by 
10, and that quotient is saved, “shaving off ” the last number. This is iteratively repeated until the quotient is 
0 with a remainder. Because we extract the last digit first, and the digits are concatenated into a String, we 
print the characters of the String in reverse.

Recursive approach: Notice that this problem fits well with a recursive approach: the extraction of each 
digit is the same as any other (subtask same as the overall task), and as with the number print example earlier, 
the first digit is extracted at the end of the task, meaning printing of it should happen there too. Consider this 
recursive approach to this problem:

Code Snippet CC3.12
public static void displayNumberDigits(long num)
{
    if (num > 10)
        displayNumberDigits(num / 10);
 
    System.out.print((num % 10) + " ");
}

With this solution, the method invokes itself and divides num by 10, “chopping off ” the last digit and sending 
a copy of the smaller num value to the next invocation. At the base case, the parameter value falls below 10, 
and the invocation chain stops. Then the next line of code after the call can execute, the method ends, and 
execution returns to the prior up the chain. The printing of the digits happens in the natural order, but it was 
processed starting with the ending digit— an elegant solution that uses the nature of a recursive algorithm to 
its advantage! Notice the simpler logic with the recursive approach versus the iterative one.

Computing the Factorial of a Number
Finding the factorial of a number is a common example of recursive programming. As a reminder, the factorial 
of a number consists of taking that number and multiplying it against all the numbers behind it to 1 (with the 
special case of 0! equal to 1). Often this is indicated with a number followed by an exclamation point, like “5!,” 
which would be pronounced “five factorial.” Mathematically, this would break down into multiplication like so:
5! = 5 * 4 * 3 * 2 * 1 = 120
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Iterative approach: The iterative approach here is fairly straightforward: the use of a loop and a variable to 
hold the growing product are all that are needed:

Code Snippet CC3.13
long factorial = 5;
for (long i=factorial -  1; i>0; i- - )
{
    factorial *= i;
}
System.out.println(factorial);

Notice that the next lower number from the original factorial is used as the first value of i in the for loop.
Recursive approach: Since you now know that recursion involves method self- invocation, you can allow 

each successive invocation to handle the next multiplication in the factorial series. In this approach, the method 
will return back a long that will be used by the prior invocation:

Code Snippet CC3.14
public static long findFactorial(long num)
{
    if (num <= 1)
        return 1;
    else
        return num * findFactorial(num -  1);
}

Notice the base case here will be the special factorial results of 1! or 0!. The first invocation of the method will 
return to the calling code num * (num -  1). The second invocation receives (num –  1) and returns back (num 
–  1) * (num –  2), and so on, building the factorial chain, each subtask similar to the whole. The trade- off 
here is elegance of the solution versus memory overhead of using a recursive approach.

Calculating a Specific Fibonacci Number
Another common example used to help understand recursive programming is writing code to generate the 
value of a specific Fibonacci number. Fibonacci numbers follow a certain ever- increasing sequence, and this 
sequence occurs in nature (tree leaves and branching, ice patterns, flower structure, etc.) and has applications 
to problems in mathematics, data management, and finance, among other areas.* The Fibonacci sequence can 
be seen in action in figure CC3.1 in the structure of the sunflower, the way the branches of a snowflake grow, 
and the fractal Mandelbrot patterns.† The value of a specific Fibonacci number is the sum of the two Fibonacci 
numbers behind it and so on in the series. In math terms, the formula for this would be the following:
Fn = F(n -  1) + F(n -  2)

And the first fifteen Fibonacci numbers in the series are listed in table CC3.1:

Table CC3.1. First Fifteen Numbers in the Fibonacci Sequence

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

The challenge here is that the fifth Fibonacci number— F4, for example— cannot be found until you know 
what the values for F3 and F2 are, and those cannot be known until the ones behind them are calculated, and 
so on. The value for F0 is always 0 and F1 is always 1, so these help to start the calculation of a sequence. Since 
each number is calculated the same way, this lends itself to a recursive approach very nicely:

* https:// en .wikipedia .org/ wiki/ Fibonacci _sequence.
† https:// en .wikipedia .org/ wiki/ Mandelbrot _set.
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Code Snippet CC3.15
public static long findFibonacci(long num)
{
    if (num == 0)
        return 0;
    else if (num == 1)
        return 1;
    else
        return findFibonacci(num -  1) + findFibonacci(num -  2);
}

The recursive approach here is slightly different than in the prior examples. Notice here that the method 
findFibonacci() is invoked twice from within each recursive method invocation. Earlier the invocations were 
chained, whereas here the invocations branch out into two “paths.” Each invocation will call two other instances 
of the findFibonacci() method, passing a parameter value to it. At the end of these branching chains, the 
value of num will reach 0 or 1, causing the base case to trigger and return 0 or 1, respectively, for those values. 
Execution will return up the branches, adding all the 1 values until the specific Fibonacci value requested has 
been summed. Figure CC3.4 shows this branching for the calculation of F5, whose value is summed up to be 5.

You can invoke the method to calculate the first twenty Fibonacci numbers easily with the following code 
in a main() method:

Code Snippet CC3.16
for (int i=0; i <= 20; i++)
    System.out.println(
            "F(" + i + "): "
                    + findFibonacci(i));

This code produces the following output:
F(0): 0
F(1): 1
F(2): 1
F(3): 2
F(4): 3
F(5): 5
F(6): 8
F(7): 13
F(8): 21

Figure CC3.4.	Fibonacci	Recursive	Call	Branching	for	F(5)
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F(9): 34
F(10): 55
F(11): 89
F(12): 144
F(13): 233
F(14): 377
F(15): 610
F(16): 987
F(17): 1597
F(18): 2584
F(19): 4181
F(20): 6765

In this case, recursive behavior of the code lends an elegance to the solution that makes implementation 
and usage easy.

Challenge: Change the for loop so that it finds up to the fiftieth Fibonacci number (F50). Notice how the 
calculations slow down a great deal the closer to the fiftieth Fibonacci number you get. This recursive branch-
ing can get very complicated even though it is only simple addition!
. . .
. . .
F(42): 267914296
F(43): 433494437
F(44): 701408733
F(45): 1134903170
F(46): 1836311903
F(47): 2971215073
F(48): 4807526976
F(49): 7778742049
F(50): 12586269025  // Takes a really long time. . . 12+ Billion!

When Recursion Can Hinder Efforts: Approximating Pi (π)
Because of the sequential invocation chaining that occurs with recursion, most iterative solutions to problems 
can be converted to a recursive approach. But this does not mean that they should be. Sometimes the overhead 
involved with recursion can hinder or even prevent a full solution. Consider the task of approximating the 
value of pi (π). Pi is equal to the circumference of a circle divided by the diameter. Since measurements of these 
are never perfect in the real world, several mathematical techniques have been developed to approximate pi, 
one of these being the Leibniz formula, which looks like this:*

π = 4 * ( (1/1) − (1/3) + (1/5) − (1/7) + (1/9) − … (1/n) )
This formula is commonly used in programming examples because it tests your ability to use expressions, opera-

tors, boolean logic, and loops to arrive at the solution. This formula is said to approximate pi because it comes close 
but is never exactly right. The further out you calculate the fractions in the formula (the bigger the n), the more 
digits of pi you can extract. But it takes a lot of terms to extract even a few digits. Pi’s first ten digits are as follows:
3.1415926535

Iterative approach: The following method uses a nonrecursive, iterative approach to approximate pi using 
the Leibniz formula. This approach has limits too, particularly the precision limit of the double data type. A 
better use might be the BigDecimal class or the implementation of a class of your own so that a (reasonably) 
unlimited number of decimals can be calculated. The method looks like this:

Code Snippet CC3.17
public static double piTerms(long numberOfTerms)
{
    double pi = 1;

* https:// en .wikipedia .org/ wiki/ Leibniz _formula _for _ %CF %80.



478 • Companion Chapter 3 / Recursion

    double denom = 3;
    boolean subtract = true;
 
    for (int i=0;i<numberOfTerms; i++)
    {
        if (subtract)
        {
            pi - = (1.0 / denom);
            denom += 2;
            subtract = false;
        }
        else
        {
            pi += (1.0 / denom);
            denom += 2;
            subtract = true;
        }
    }
    return pi;
}

Notice that as with the Leibniz formula, an if…else allows for the “flip- flop” of a subtraction or addition for 
each successive term. The parameter numberOfTerms determines how many fractions to sum up. Here are some 
separate runs of this method to show you how poorly and slowly it can approximate pi (correct terms in bold):
System.out.println(piTerms(10));        // Ten Terms
System.out.println(piTerms(100));       // One Hundred
System.out.println(piTerms(1000));      // One Thousand
System.out.println(piTerms(10000));     // One Hundred Thousand
System.out.println(piTerms(1000000));   // One Million
. . .
3.232315809405594
3.1514934010709914
3.1425916543395442
3.1416926435905346
3.1415936535887745

Notice that it takes over one million terms summed up just to extract five decimal places in pi!
Recursive approach: There are several ways to handle this algorithm recursively. The “flip- flop” of the sign 

can be handled by simply multiplying the return from the next recursive call by −1 (subtracting a negative 
yields a positive, etc.). As with prior examples, we start at the end of the series (with the largest value of n) and 
sum backward through the series. The base case of the parameter value reaching 0 ends the invocation chain, 
and the methods return, adding up the returned value as each closes:

Code Snippet CC3.18
public static double recursivePiTerms(long numberOfTerms)
{
    if (numberOfTerms != 0)
    {
         return (1.0 / ((2.0 * numberOfTerms) + 1))
                + (- 1 * recursivePiTerms(numberOfTerms -  1));
    }
    else
         return 1.0; // Base Case
}

The multiplication by 4 is done in the calling code to simplify the method (otherwise, we would have to pass a 
value indicating how far into the series we are, multiplying the sum by 4 before we return to the calling code). 
Testing this out, it seems to work well!
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System.out.println(4 * recursivePiTerms(100));
System.out.println(4 * recursivePiTerms(1000));
. . .
3.1514934010709914
3.1425916543395442

Recursing one hundred terms yielded one decimal place! What about one thousand? That yielded two places. 
When you try to run this with ten thousand terms, an issue occurs:
System.out.println(4 * recursivePiTerms(10000));
. . .
Exception in thread "main" java.lang.StackOverflowError

Remember that recursion adds memory overhead from method invocation. Too many methods in memory 
will fill up the frame stack and lead to a StackOverflowError. This is a good lesson: just because an iterative 
solution can be converted to a recursive one does not mean it should. Will the overhead prevent the new solu-
tion from completing? In this case, it did. Because the Leibniz formula is so inefficient, it takes a lot of terms to 
extract pi digits. Because each term requires a method call in a recursive solution, there are only so many that 
can be calculated. So in this case, we need to stick with the iterative solution or investigate other mathematical 
approximations of pi that might recurse better (research that this author will leave up to you!).

SUMMARY POINTS

• Using recursive techniques in programming 
allows for complex processes to occur with fairly 
simple code implementations.

• Recursion in Java is enabled by implementing a 
method so that it invokes itself from within its 
own code body.

• A base case must be implemented in the logic 
of the recursive method so that recursive calls 
stop	and	method	invocations	begin	ending,	

shortening the method invocation “chain” back to 
the original method execution.

• All iterative problems in programming can be 
converted	into	a	recursive-	based	solution,	but	
many	should	not,	as	in	many	cases,	it	could	
hinder both the simplicity of the logic and the 
completion of the solution.

• Recursion works best with smaller chunks of a 
task and can be subdivided into portions that 
resemble the efforts of the whole task.

QUICK PROBLEMS

 1. Coding: Write a recursive method that prints num-
bers	in	a	sequence,	starting	from	a	high	number	
down to zero but skipping each even number. 
Ensure a working base case that stops the invo-
cation chain.

 2. Think: Why is the use of a method critical to 
enabling recursive approaches to problem- solving 
in programming?

 3. Coding: Write a recursive method that accepts a 
String phrase and prints that phrase on each invo-
cation,	leaving	off	one	additional	letter	on	the	end	
of the phrase on each print. Ensure a working base 
case that stops the invocation chain.
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CC3.2 Practical Business Uses of Recursion in Java
Discussions and examples of recursion in programming can quickly 
wander into very interesting discussions involving topics in computer 
science, mathematics, and algorithmic efficiency. Though these are 
very important topics, they are beyond the scope of this book’s goal: 
to examine Java programming concepts relevant to information sys-
tems professionals (that’s you!). You are encouraged to search and 
explore discussions on those topics regarding recursion as you are 
interested, particularly on how efficient various recursion tech-
niques are. In the following section, you will see several practical 
applications of recursion to programming problems that information 
systems developers might face. Keep in mind that these techniques 
have all been adapted from the valuable work done by the community 
of computer scientists, mathematicians, and others.

Using Recursion to Print the Contents of a Directory and 
Its Subdirectories
When building an information system, you will have frequent need for the software to be able to open from 
and save to a directory (on either a hard drive or a cloud location mapped as a drive to the local machine). 
Similarly, you might need to display the contents and structure of a directory and all the files and subdirectories 
within it to help the user navigate files and choose what file to open and where to save.

Think about the overall task: displaying files in a directory. This is the same whether or not you are in a 
top- level directory or a subdirectory eight folders deep. In this case, the subtask is similar to the overall task, 
making this a great problem to solve using recursive techniques.

Consider the directory structure shown in figure CC3.6 with files and subdirectories found 
within a Java project folder (this could be in NetBeans, Eclipse, jGRASP, or other environments):

The directory and its contents do not have to be local to a Java project per se: they can be located 
anywhere on a hard drive or mapped drive. For this example, the folders are part of a Java project 
directory that will simplify the example code. How can the contents be recursively listed? Con-
sider the following algorithm:
◦ In a method, list all the items in the top- level folder.
▪ If the item is a file, print its name.
▪ If the item is a subdirectory, recursively invoke the method, passing it to this directory.

The recursive call will descend one folder down each time a directory is found, listing files and directories 
stored within and recursively “crawling” down those folders as well until no more are found. First, here is the 
code that implements the recursive approach (Note: you will need to import java.io.* in order to use the File 
class and its methods; the recursive method invocation is in bold):

Code Snippet CC3.19
public static void recursiveDirectoryPrint(
        File fileToExplore, int level)
{
    if (fileToExplore.isFile())
    {
        for (int i=0;i<level;i++)
            System.out.print("   ");
        System.out.println(fileToExplore.getName());
    }
    else if (fileToExplore.isDirectory())
    {
        if (level > 1)

Figure CC3.5.	Line	of	People	Waiting	to	Be	
Recursively Sorted

Source: “Queue” by gadl is licensed under CC BY- SA 
2.0, https:// www .flickr .com/ photos/ 24183489 @N00/ 
89650415.

Figure CC3.6. 
A Local 
Directory 
Structure in a 
Java Project
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            for (int i=0;i<level;i++)
                System.out.print("   ");
 
        System.out.println(fileToExplore.getName());
 
        level += 1;
 
        for (File f: fileToExplore.listFiles())
        {
            recursiveDirectoryPrint(f, level);
        }
    }
}

Notice that the parameter level is used merely to help give visual structure to the directory structure output 
that prints. Invoking this method on the local Java project directory folder looks like the following:

Code Snippet CC3.20
// Recursive Approach
File testFile = new File("./directory");
recursiveDirectoryPrint(testFile, 1);

This produces the following output:
directory
      fileOne.txt
      fileTwo.txt
      subDirectoryOne
         subDirectoryOne_One
            fileFour.txt
      subDirectoryTwo
         fileThree.txt

Figure CC3.7 shows the visual “crawl” of this recursive algorithm through the directory structure in the 
folder. Notice that the “crawl” is similar in behavior to that shown in the Fibonacci example in figure CC3.4.

Searching an Array Recursively for a Specific Value 
Using Binary Search
Recall from the discussion in chapter 7 that an array is a series 
of elements, and this series is mapped using index notation 
from 0 to n, n being the quantity of “things” in the array (values, 
object references, etc.). A common task that developers in 
information systems often face is searching for an array or 
series of data for a specific value. Often this occurs with a 
database search of a table (using an SQL query). If values are 
stored in a memory- located data structure like an array or 
ArrayList<>, then knowing how to search that array effi-
ciently is a valuable skill for the information systems developer. 
This is particularly important when you have created objects 
of custom data types for your application and need to perform 
search actions upon arrays of them. In these cases, any built- in 
search actions may not be guaranteed to work properly, if at 
all. Implementing your own search can ensure they do.

Iterative approach: Consider the following iterative 
approach to searching an int array for a particular value. Note 
the logic for whether the value was found or not: Figure CC3.7. Visual “Crawl” to Recursively Print 

the Directory Structure
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Code Snippet CC3.21
int[] array = {1, 3, 4, 6, 10, 16, 24, 34, 78, 101};
int valueToFind = 78; // Example value to search for
int i = 0; // declaration and initialization of i
 
for (; i<array.length; i++) // i declared outside for loop
{
    if (array[i] == valueToFind)
        break;
}
if (i < array.length)
    System.out.println("Value found at index " + i);
else
    System.out.println("Value NOT found!");

The loop control variable i is declared outside the for loop so that it can be used afterward (scope rules). For 
an array this small, this is a fairly efficient search. If this search was being conducted thousands of times a 
second, the inefficiencies would rise. Every element of the array has to be compared to the valueToFind every 
time a search is performed until the element is found. If the array is much larger than this, say several thousand 
elements in quantity, and the search is being performed several thousand times a second, things get slower.

Recursive approach: Using recursion, computer scientists have developed a technique (among many others) 
for efficiently searching an array of values for a particular one. The binary search uses a “divide- and- conquer” 
approach to finding the element being searched for while minimizing (as much as possible) the number of 
comparisons between array elements and the valueToFind. Again, chapter 7 demonstrates the use of the 
binarySearch() method in the Arrays class. As developers working within information systems contexts, 
you may need to write your own version of this method for custom data types you work with. The binary 
search technique is also very dependent on recursion for its efficiency. Since searching a subpart of the array 
is the same as searching all of it (smaller task similar 
to the overall), recursion is highly applicable here. A 
binary search works in the following way:

• Use an already sorted array (this is a critical 
prerequisite).

• Find the middle element of the array. Compare 
the valueToFind to the middle element.
◦ If the valueToFind is smaller than the middle 

element, continue the search in the left half of 
the array.

◦ If the valueToFind is larger than the middle 
element, continue the search in the right half 
of the array.

• Repeat this middle element comparison with 
the appropriate half of the array, and continue 
subdividing until the element is found (or not).

Using the array from earlier, figure CC3.8 demonstrates this binary search algorithm visually.
For binary search to work correctly, it is critical that the array used has already been sorted. You will look 

at an efficient sorting technique later in this chapter. Since this algorithm divides and conquers the array, it 
eliminates half the elements under consideration at the start of each search and continues dividing in half until 
it reaches the value being searched for. As you have seen, recursion can help subdivide a task down until a base 
case is reached, which is exactly what we need here. The following is one implementation of the binary search 
algorithm for an int array of values (the recursive invocations to the method are highlighted in bold):

Figure CC3.8.	Visual	Demonstration	of	the	Binary	Search	
Technique



CC3.2 Practical Business Uses of Recursion in Java • 483

Code Snippet CC3.22
public static boolean binarySearch(
        int[] arrayToSearch,
        int valueToFind,
        int start, int end)
{
    int indexMidPoint = - 1; // Value Will Change
 
    System.out.println(
            "Searching from indexes " + start
                    + " to " + end);
 
    if (start == end)
    {
        if (arrayToSearch[start] == valueToFind)
            return true;
        else
            return false;
    }
 
    indexMidPoint = ((start + end) / 2);
 
    if (arrayToSearch[indexMidPoint] == valueToFind)
        return true;
    else if (valueToFind < arrayToSearch[indexMidPoint] )
        return binarySearch(
                arrayToSearch, valueToFind,
                start, indexMidPoint -  1);
    else
        return binarySearch(
                arrayToSearch, valueToFind,
                indexMidPoint + 1, end);
}

A few things to point out about this implementation:
• It assumes that the array reference it receives is for an already sorted array.
• The first selection statement tests if the array range being searched only contains one element (if the start 

and end are equal). In that case, a simple comparison is made. This will occur at the end of the recursive 
invocation chain.

• Notice that if the valueToFind is less than the midpoint value, the range is set from the first element in 
the array to the element just before the midpoint, and a recursive call is made with that range. The next 
invocation of the method will find the midpoint of that smaller range and subdivide some more.

Using the recursive binary search method upon the array exampled earlier yields the following:

Code Snippet CC3.23
// Binary Search
int[] array = {1, 3, 4, 6, 10, 16, 24, 34, 78, 101};
int valueToFind = 78;
System.out.println("Is " + valueToFind + " in the array?:");
System.out.print(
        binarySearch(
                array,
                valueToFind,
                0, array.length -  1));

The output from this would be the following:
Is 78 in the array?:
Searching from indexes 0 to 9
Searching from indexes 5 to 9
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Searching from indexes 8 to 9
true

Notice the printing of the indexes. On the first invocation, all ten elements were considered. Since the 
midpoint is chosen with the formula (start + end) / 2, most likely the int index element 4 (value 10) 
was chosen as the midpoint. Since 78 > 10, the array was partitioned into two halves, and only the second, 
larger half was considered. The recursive invocation passed this new range into the next method call, and the 
task was performed again until the value was found.

Sorting an Array Using the Recursive QuickSort Technique
Since many search techniques like binary search require an array that is already sorted, understanding how 
to sort is equally important. For information systems professionals often working with custom data types/
classes, the argument is the same: the built- in sorting methods available in the Arrays class (and other places) 
may not work correctly or at all with an array or series of your data types. You may need to implement your 
own sort algorithm. Luckily, there are many to choose from (and you are invited to research the others we do 
not discuss): bubble sort, merge sort, selection sort, and many others. The QuickSort technique, like binary 
search, is an algorithm that benefits from the power of recursion and is a good sort technique to explore in 
this chapter. While incredibly efficient, the quick sort algorithm can be a bit tricky to understand (but not 
impossible). In plain language, here is how it works (an example array is printed here so that you can have a 
helpful visual reference while reading the algorithm):

Array used for QuickSort algorithm:
{3, 8, 10, 2, 7, 4, 11, 21, 6}

• Given an array of elements, pick one element to serve as a Pivot element (there are several opinions on 
how to do this effectively— the element right in / near the middle works well).

• Swap the Pivot element with the very last element in the array range.
• Choose the first element in the array as the LeftPointer. Choose the second- to- last element as the 

RightPointer.
• Walk the LeftPointer to the right along the array until you encounter an element that is larger than 

the value of the Pivot.
• Walk the RightPointer to the left along the array until you encounter an element that is smaller than the 

value of the Pivot.
• Swap the element values of LeftPointer and RightPointer, 

but keep the pointers at the index positions they are at.
◦ Continue the walk of LeftPointer to the right and 

RightPointer to the left, swapping numbers as stated 
until the LeftPointer is farther to the right than 
RightPointer.

• Swap the value of the elements at Pivot and LeftPointer 
only. Change the Pivot index accordingly.

• Using recursion, repeat this entire algorithm on the ele-
ments to the left of the Pivot element and to the elements 
to the right of the Pivot element. Do not include the 
Pivot element, as it is now sorted in its appropriate position.

Figure CC3.9 gives a visual demonstration of how the Quick-
Sort algorithm works on the earlier example array.

The algorithm is a bit complex, as is the code needed to 
implement it. Based on what you research, there are several 
“flavors” of QuickSort, and many professionals will implement 
it in slightly different ways. The code for the recursive method 
that implements the algorithm is as follows (with comments 
and the recursive calls in bold):

Figure CC3.9. Visual Demonstration of the QuickSort 
Algorithm
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Code Snippet CC3.24
public static void recursiveQuickSort(
        int[] numArray,
        int start, int end)
{
    // Assumption: "end" is the last index,
    //  not the array length.
 
    // Very simple pivot choice
    int pivotIndex = (start + end) / 2;
    int leftCompareIndex;
    int rightCompareIndex;
    int swapHolder;
 
    if (end < start || end == start)
        return;
 
    // If the range is size two, simply compare
    //  and swap if necessary:
    if (end -  start == 1)
    {
        if (numArray[start] >= numArray[end])
        {
            swapHolder = numArray[start];
            numArray[start] = numArray[end];
            numArray[end] = swapHolder;
            return;
        }
    }
 
    // Swap the pivot number and the last number
    swapHolder = numArray[end];
    numArray[end] = numArray[pivotIndex];
    numArray[pivotIndex] = swapHolder;
 
    // Change the pivotIndex
    pivotIndex = end;
 
    // Set the comparison indexes
    leftCompareIndex = start;
    rightCompareIndex = pivotIndex -  1;
 
    // Begin the left and right comparisons to pivot.
    while (leftCompareIndex < rightCompareIndex)
    {
       while (numArray[leftCompareIndex] <= numArray[pivotIndex]
               && (leftCompareIndex < end))
       {
           // "walk" right
           leftCompareIndex++;
       }
 
       while (numArray[rightCompareIndex] >= numArray[pivotIndex]
               && (rightCompareIndex > 0))
       {
           // "walk" left
           rightCompareIndex- - ;
       }
 
       // If the left comparison passed the right, we're done.
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       // This skips the swap.
       if (leftCompareIndex > rightCompareIndex)
           break;
 
       // If the while loops have stopped we can swap numbers
       swapHolder = numArray[rightCompareIndex];
       numArray[rightCompareIndex] = numArray[leftCompareIndex];
       numArray[leftCompareIndex] = swapHolder;
 
       // The search can continue. . .
    }
 
    // If the while loop is done, we've completed the comparisons.
 
    // Swap the pivot and the leftCompare number
    swapHolder = numArray[leftCompareIndex];
    numArray[leftCompareIndex] = numArray[pivotIndex];
    numArray[pivotIndex] = swapHolder;
 
    // Update the pivotIndex
    pivotIndex = leftCompareIndex;
 
    // Recurse each half of the array around and excluding the pivot
    recursiveQuickSort(numArray, start, pivotIndex -  1); // left
    recursiveQuickSort(numArray, pivotIndex + 1, end); // right
}

Notice that in the recursive invocation, only the range to the left of the now- sorted pivot is passed into one 
invocation and the range to its right into the second invocation of the method. The base case here is when 
the invocation chain examines just one or two elements:

• If two elements, a simple comparison and swap are performed.
• If only one element, the method simply returns with no actions taken.
An example invocation on several test arrays would look like the following (Note: a method called 

arrayPrint() is also invoked, written by the author, that simply prints the contents of an int[] array with 
bracket decorations around each element for ease of reading; see if you can implement this additional method 
on your own):

Code Snippet CC3.25
int[] array = {3,8,10,2,7,4,11,21,6};
int[] array2 = {89,5,34,65,22,11,9,3,90,103,45};
int[] array3 = {2, 3, 4, 22, 4, 19, 109};
 
arrayPrint(array);
recursiveQuickSort(array, 0, array.length − 1);
arrayPrint(array);
System.out.println();
 
arrayPrint(array2);
recursiveQuickSort(array2, 0, array2.length − 1);
arrayPrint(array2);
System.out.println();
 
arrayPrint(array3);
recursiveQuickSort(array3, 0, array3.length − 1);
arrayPrint(array3);

This produces the following output (with sorted arrays highlighted here in bold):
[3][8][10][2][7][4][11][21][6]
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[2][3][4][6][7][8][10][11][21]
 
[89][5][34][65][22][11][9][3][90][103][45]
[3][5][9][11][22][34][45][65][89][90][103]
 
[2][3][4][22][4][19][109]
[2][3][4][4][19][22][109]

The algorithm is effective even when there are duplicate values or when the largest and smallest values are 
already at the ends of the array. Like its name implies, the QuickSort algorithm is very efficient in terms of 
producing a sorted array quickly without a lot of unnecessary looping or value comparisons. QuickSort is the 
implemented sort technique for many of the built- in sorting methods and code that you might call in Java 
and other languages as well.

Summary
In	this	chapter,	you	have	learned	about	the	basics	
of the recursive approach to problem- solving in pro-
gramming.	The	ability	of	methods	to	call,	or	invoke,	
themselves is a key to enabling recursive behavior in 
applications. You have also learned the importance 
of implementing a base case in a recursive method 
so that the invocation chain eventually ends. Addi-
tionally,	you	have	explored	some	basic	and	more	
practical uses of recursion to implement very elegant 
and effective problems often faced by information 

systems professionals attempting to programmati-
cally	manage	data	in	an	application.	There	are	many,	
many more types of problems where recursion can be 
effectively applied beyond those listed in this chapter. 
Particularly,	visual	and	graphics	display	applications	
(such	as	the	Mandelbrot	set/fractals)	are	commonly	
discussed	uses	that	you	will	find	in	your	research.	
You are encouraged to explore other problems that 
recursion can be applied to as a part of rounding out 
your overall professional development knowledge.

Practice Problems
Terminology
Match	the	following	terms	from	the	chapter	with	their	most	appropriate	definition:

 1. Recursion  a. Problem- solving technique in programming that uses loops and selection statement logic to 
sequentially perform a subtask.

 2. Invocation chain  b. The element that divides the work in the QuickSort algorithm.

 3. Base case  c. Algorithm that implements a “divide- and- conquer” technique to sorting a series of values.

 4. Iterative approach  d. The connection between iterations of a method that has recursively invoked itself to perform a task.

 5. Overhead  e. The element that divides the work in a binary search algorithm.

 6. Recursive branching  f. A problem- solving technique where the same work is applied to an ever- subdivided portion of a task 
that resembles the overall total task at hand.

 7. Binary search  g. When two recursive invocation chains emerge from one method invocation.

 8. QuickSort  h. Algorithm that implements a “divide- and- conquer” technique to finding a value.

 9. Pivot value  i. Logic that causes a recursive invocation chain to stop and begins the completion of recursed 
method execution.

 10. Midpoint  j. The memory “cost” of solving a programming problem using a recursion technique.
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Think about It
 1. Describe the concept of recursion in the simplest 

terms.
 2. What aspects of a programming language like 

Java enable the use of recursive approaches to 
problems?

 3. For what types of problems can recursion be best 
applied?

 4. Can all iteratively solved programming problems 
be converted to a recursive approach? When might 
this be suboptimal?

 5. Describe what the base case does in a recursive 
method. Why is it important?

 6. Describe the recursive method invocation chain. 
How	does	this	limit	some	recursive	approaches	
to programmatic problem- solving?

	 7.	 Describe	recursive	branching.	How	can	it	be	useful	
when processing a series of data?

 8. Why can a recursive method invocation chain be 
described	in	terms	of	last	in,	first	out	(LIFO)?

	 9.	 How	does	recursion	enable	a	binary	search’s	speed	
and effectiveness?

 10. Describe the divide- and- conquer nature of the 
QuickSort algorithm.

	 11.	 How	does	a	recursive	approach	lend	itself	well	to	
the calculation of a Fibonacci number?

Short Syntax Problems
 1. Write a short recursive method that will print all the 

letters from a up until a letter provided as a param-
eter in alphabetical order.

 2. Write a short recursive method that will take a 
String phrase as a parameter and print all the 
vowels in the phrase in the reverse order that they 
occur.

 3. Write a short recursive method that will search a 
String and print out the quantity of e and i vowels 
found.

 4. Write a short recursive method that will print out 
lottery numbers randomly. Seven numbers should 
print,	each	number	randomly	chosen	between	1 and 
75. The eighth number should be a SuperNumber 
and randomly be chosen between 1 and 150. Ensure 
that the SuperNumber prints last.

 5. Write a short recursive method that will accept 
an int parameter and print out a number of lower-
case	letters,	randomly	chosen,	between	a and z,	
inclusive.

Full Problems
 1. Write a program that will accept a String phrase 

entered by the user on the keyboard. The program 
will	perform	the	following	tasks	recursively:

 a. It will count the number of words in the phrase 
and display that count.

 b. It will process the number of vowels in each 
whole word separately. It will display that count 
at the end.

	 2.	 Write	a	program	that	will	recursively	search	a	file	
directory	and	list	only	the	files	that	end	with	the	.txt 
file	extension.	It	will	present	this	list	to	a	user	along	
with option numbers. If the user chooses a particu-
lar	file,	the	program	will	open	the	file	and	print	its	
contents to the console. The user will be presented 
with	the	option	to	choose	another	file	or	quit	the	
application.

 3. Write a program that implements a recursive 
method called binarySum(). The method will accept 
an array of int values and will recursively sum up 
all pairs of numbers in the array in a binary fashion 

(recursively working on the left and right ranges of 
the array in a divide- and- conquer fashion). Include 
a base case for a single value.

	 4.	 Leverage	your	chapter 8	skills	and	create	a	class	
called LinePerson. This class will have one data 
field,	a	double	personHeight. Create an instance 
method for the class that will compare two 
LinePerson object heights (the instance object 
and the reference passed into the method). Then 
write an application that implements the QuickSort 
algorithm from this chapter. Adapt the algorithm so 
that an array of LinePerson objects are sorted by 
their personHeight,	from	smallest	to	largest.

 5. Write a program that will prompt a user for two 
pieces	of	information:	a	file	directory	they	would	
like	to	recursively	search	and	a	file	extension	they	
would like to search for. The program will recur-
sively	search	the	directory	and	 list	all	files	that	
match	that	file	extension.	If	no	files	are	found,	print	
an appropriate message to the user.
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