
Copyright © 2024 Prospect Press. All rights reserved. For use with Fundamentals of Java Programming for
Information Systems by Jeremy D. Ezell

C o m p a n i o n C h a p t e r 4

Abstract Classes, Interfaces, and Generics

What You Will Learn in This Chapter
An overarching idea behind object-oriented (OO)
programming is the idea of enabling more function-
ality and actions with less code written and mini-
mizing complexity of logic. The usage of abstract
classes, interface classes, and generic data types in
Java applications aligns with this idea. Developers
can leverage the strengths of class inheritance to
ensure common functionality in a family or classes,
and they can deploy common functionality across
unrelated classes. With generic-type classes and
methods, developers can provide flexibility for exist-
ing code to be compatible with multiple classes that
exist now as well as for those that will be devel-
oped in the future. Flexibility is the key. Exploring
advanced topics in OO development will help you
write more flexible, loosely coupled, and more “intel-
ligent” code that can adapt to data types used at
runtime.

Specifically, this chapter will help you do the following:
	 1.	 Understand the difference between abstract

classes and concrete classes
	 2.	 Understand the difference between interfaces and

abstract classes and when each is appropriate to
be used

	 3.	 Learn how to implement and use both abstract
classes and interfaces

	 4.	 Understand the syntax rules for abstract and inter-
face classes

	 5.	 Learn the basics of using generic-type interfaces
from the Java API by using interface Comparable

	 6.	 Learn the basics of generic-type methods and how
to use the generic-type parameter

	 7.	 Learn the basics of defining a generic-type class
and how to use it in an application

	 8.	 Learn advanced generic-type concepts such as type
parameter bounding and wildcard characters

Opening Scenario
After several client meetings, your team has elicited
details about the data kept by the mom-and-pop gro-
cery store and generated extensive information
regarding their daily operations (stocking, receiving,
personnel, advertising, store displays, shopper pro-
grams, etc.). The team has also developed an exten-
sive set of requirements that the new system must
implement. You recently met with several team mem-
bers who work on just the modeling of the data in use
in the client’s organization and listened to their con-
cerns: “This store sells everything, not just food: flow-
ers; kitchen goods; bathroom cleaning supplies;
pharmacy items, both prescription medicines and
over-the-counter items; deli products; and even coffee
shop items. We have a lot of entities to represent in

the system!” One team member described her experi-
ences with a prior team and the system it planned
and built where everything was “hard coded” and “tied
together.” She clarified, “When the first version went
online, it worked wonderfully. We had about forty
class data types modeling the data in use by the cli-
ent. After the first version went live, we moved on to
phase 2 requirements, which saw an additional
twenty class data types added. Integrating those into
the current system was a nightmare! Everything was
so tightly bound, classes using methods of other
classes, that one change trickled throughout the sys-
tem. We probably had ten changes for each of the
twenty classes, and that spurred countless hours of
work just fixing the classes. I won’t even talk about

490 • Companion Chapter 4 / Abstract Classes, Interfaces, and Generics

the work in the application code we did to accom-
modate all the new class types!” Hearing this, you
hope that a phase 3 is not in their immediate future.

Having heard their concerns loud and clear and
after a couple of sleepless nights thinking about that
“nightmare” scenario, you decide to research some
advanced object-oriented concepts that focus on
maximizing the flexibility of code. Particularly, you
are interested in class flexibility with existing code
and the ability to model new data types later and
have them drop into place with the existing system
with minimal changes. Once again, helpful team

members steer you toward the idea of “generic”
classes, abstract classes, interfaces, and something
called “generic-type classes.” A quick web search
shows code syntax completely new to you! Yet all
the established advocates for programming, both
within and without Java, tout the benefits of abstract
classes, interfaces, and generics, stating that “future
flexibility” is enabled by a “mastery of these topics.”
Exactly what you are looking for! You dig in again,
hoping to understand these techniques in time to
reassure your team that their experienced nightmare
will not have a sequel . . .

CC4.1 Abstract and Concrete Classes
Note: This chapter assumes you are familiar with the topics in chapters 8 and 9.

In chapter 8, you learned the basics of creating new data types through the creation of user-defined classes. This
yields many programming benefits: bundling actions with data, bundling the data itself through encapsulation,
modeling real-world data and entity relationships through effec-
tive class design, and much more. Also recall that in chapter 9,
you learned that a class can extend the functionality and data
of a prior one, enabling compatibility of future class objects
with code targeting objects of their superclass. This chapter will
build on these ideas with advanced object-oriented (OO) top-
ics that continue to increase the flexibility and usage of classes.
“Flexibility” is most definitely the major theme of this chapter.

Abstract classes in Java: The idea of an abstract class in
Java is pretty simple. Recall that via class inheritance, a class
can extend the data and the functionality of the parent class /
superclass it inherits from. It can also override any inherited
public methods and replace their functionality for invocations
on its class or instance objects. With this in mind, consider the
following situation:

•	 A parent class you have developed is inherited from several
subclasses.

•	 Each of those classes will override one or more of the parent
class’s methods.

•	 Your parent class itself is rarely ever instantiated or has any
of its methods invoked, as the subclasses are always more
useful in their respective contexts.

So instead of attempting to provide a “default” implementation for these methods in your class, you can simply
make your parent class abstract. An abstract class is considered “incomplete,” as some of its code is missing!
The developer for an abstract class will only provide the method header for certain methods and allow future
subclasses to implement the code for those methods.

Consider the following example of a class called Animal:

Figure CC4.1. Abstracted Layout Plan for a
Home—Details to Be Filled in Later

Source: “16 Radcliffe Rough Layout” by sparr0 is licensed
under CC BY-SA 2.0, https://​www​.flickr​.com/​photos/​
22611472​@N02/​8960537341.

CC4.1 Abstract and Concrete Classes • 491

Code Snippet CC4.1
public class Animal {
 private int age;
 private String skinType;

 public Animal(int age, String skinType)
 {
 this.age = age;
 this.skinType = skinType;
 }

 public int getAge()
 {
 return this.age;
 }

 public String getSkinType()
 {
 return this.skinType;
 }

 public String describeAnimal()
 {
 return "Age: " + this.age
 + ", Skin Type: " + this.skinType;
 }

} // End of class Animal

If you think about it, having a class Animal is great, but it is not entirely useful in all situations. Critical pieces
of information are missing: the species, color, size, and so on. If a zoo was building an information system (IS)
to manage the animals under its care, objects of this class would not be entirely useful. How could you generate
a list of one particular type of animal? What about their feeding needs? Their range of motion? The developer
of a zoo information systems has determined that this class will never be instantiated and will most likely be
extended by subclasses that implement the useful information needed. So the developer decides to make this
class abstract as in the following (changes are in bold):

Code Snippet CC4.2
public abstract class Animal {
 private int age;
 private String skinType;

 public Animal(int age, String skinType)
 {
 this.age = age;
 this.skinType = skinType;
 }

 public int getAge()
 {
 return this.age;
 }

 public String getSkinType()
 {
 return this.skinType;
 }

 public String describeAnimal()

492 • Companion Chapter 4 / Abstract Classes, Interfaces, and Generics

 {
 return "Age: " + this.age
 + ", Skin Type: " + this.skinType;
 }

 // Abstract Method
 // Let future subclasses define it later.
 public abstract String howToMove(); // No code!

} // End of class Animal

Not much has changed. The keyword abstract has been added prior to the class keyword. Also, a method
has been added that also has the same keyword abstract prior to its return type. Notice in particular the
semicolon at the end of the method header for .howToMove(). This tells the compiler that no code body, no
definition, will be provided for this method in the current class. Providing code for this method will be the
responsibility of future subclasses of Animal.

Some details about abstract classes to keep in mind:
•	 Abstract classes cannot be instantiated. You cannot create instance objects of class Animal, for example.

You are not able to use the new operator to create instances or arrays of instance references to them. You
can create an array of their subclass types though. Consider the following hypothetical example:

AbstractClass[] array = new AbstractClass[5];
array[1] = new ConcreteClass();

Though these are hypothetical classes, they show how an abstract class can be used polymorphically
as a data type.

•	 An abstract class can contain zero, one, or more abstract methods. The rule here is that if you declare any
methods to be abstract in a class, the class itself must also be abstract. On the flip side, an abstract class
is not required to have any abstract methods.

•	 The fact that an abstract class can have abstract methods means that it is, by definition, incomplete. It will
be up to future subclasses to “complete” its definition.

•	 In addition to abstract methods, abstract classes can contain all the “normal” parts of a class, including
data fields (instance and static), constructors, and other fully defined methods.

•	 The abstract methods of the class must be marked with the public or protected access modifier. They
cannot be marked private or final, which would prevent their full definition in future subclasses.

•	 Abstract classes are used in a class hierarchy with the assumption that they will serve as a superclass to
other classes. They are also valid data types and can be used as method parameters, array data types, and
so on anywhere class data types can be used.

•	 If your class extends an abstract class, the compiler forces you to provide concrete implementations of all
the abstract methods inherited from the superclass.

The abstract method .howToMove() is a great example of abstract method usage. Trying to define how an
“average” animal moves is not sensible: some walk, some fly, some crawl, some swim, some dig, some hop, and
so on. It makes much more sense to make this method abstract and let it be specifically defined by a future
subclass. Consider the following subclass of Animal called Dog:

Code Snippet CC4.3
public class Dog extends Animal {

 private String furColor;

 public Dog(int age, String skinType, String furColor)
 {
 super(age, skinType);
 this.furColor = furColor;

CC4.1 Abstract and Concrete Classes • 493

 }

 // Concrete implementation of howToMove() from
 // abstract class Animal
 @Override
 public String howToMove()
 {
 return "Run and Play!";
 }

 @Override
 public String toString()
 {
 return "Dog (best friend) Fur Color: "
 + this.furColor + " "
 + super.describeAnimal();
 }
}

Notice that the superclass/subclass context still applies here: Dog can extend Animal and inherits age and
skinType from the parent class (though they are private) and inherits the ability to call the superclass’s con-
structor. Importantly, a concrete definition for the method .howToMove() has been provided in the Dog class.
Remember the following:

•	 An abstract method consists of only a method header in a superclass.
•	 The method then is fully, concretely implemented in a subclass that inherits from the superclass, consisting

of a method header and method code body.
Most dogs can move in the same manner, so it makes sense to provide a concrete implementation of
.howToMove() here in class Dog. The developer of an abstract class leaves it up to other developers and their
subclasses to do the work of providing a definition for the abstract methods of the class. Within an abstract
class, there are only two method types that cannot be abstract:

•	 Constructors
•	 Static methods

Abstract classes allow the developer to define what is common across all the subclasses in the class inheritance
hierarchy but allow each class to define that commonality differently. You can create two more classes that
inherit from Animal—Budgie and Fish:

Code Snippet CC4.4
public class Budgie extends Animal{
 private String name;

 public Budgie(int age, String skinType, String name)
 {
 super(age, skinType);
 this.name = name;
 }

 @Override
 public String howToMove()
 {
 return "Fly!";
 }

 @Override
 public String toString()
 {
 return "Budgie Name: "

494 • Companion Chapter 4 / Abstract Classes, Interfaces, and Generics

 + this.name
 + super.describeAnimal();
 }
}

The Budgie class (in North America, these are commonly called “parakeets”) also provides a concrete definition
of the Animal class’s abstract method .howToMove() and defines how a budgie primarily moves: by flying! The
Fish class does the same:

Code Snippet CC4.5
public class Fish extends Animal {

 private String species;

 public Fish(int age, String skinType, String species)
 {
 super(age, skinType);
 this.species = species;
 }

 @Override
 public String howToMove()
 {
 return "Swim and Glub Glub";
 }

 @Override
 public String toString()
 {
 return "Fish Species: "
 + this.species + " "
 + super.describeAnimal();
 }
}

The classes Dog, Budgie, and Fish are called concrete classes because they provide full definitions for the Animal
class by filling in the abstract method gaps. Notice as well that when these subclasses define the .howToMove()
method, the abstract keyword is removed: it is no longer abstract; you are concretely completing the definition!

In a Java main() class application, you can test out the polymorphic behavior that is still capable when using
concrete classes that extend an abstract one:

Code Snippet CC4.6
public static void main(String[] args) {

 Budgie sleepy = new Budgie(3,"Feathers","SleepyBird");
 Dog caylee = new Dog(5,"Fur","Brindle");
 Fish bubbles = new Fish(1,"Scales","Goldfish");

 printAnimalDetails(sleepy);
 printAnimalDetails(caylee);
 printAnimalDetails(bubbles);

}

public static void printAnimalDetails(Animal ani)
{
 System.out.println(ani.toString() + "\n\t" + ani.howToMove());
}

CC4.1 Abstract and Concrete Classes • 495

This produces the following output:
Budgie Name: SleepyBird Age: 3, Skin Type: Feathers
 Fly!
Dog (best friend) Fur Color: Brindle Age: 5, Skin Type: Fur
 Run and Play!
Fish Species: Goldfish Age: 1, Skin Type: Scales
 Swim and Glub Glub

Even though these are concrete implementations of an abstract class, dynamic binding still applies as the
method .howToMove() is invoked: Java looks at the data type of the object referenced by the variable ani and
invokes the implementation of .howToMove() defined in that object’s class. Figure CC4.2 shows the relation-
ship between these classes as they stand so far.

Abstract classes are useful when you want to define a concept that represents some entity with a class but
does not apply in a specific, concrete way. Subclasses derived from the abstract class provide the additional
specifics, the concrete representation of an entity that falls under that context. An animal is a very generic class,
but a dog is a specific type of animal with dog-specific characteristics. Same with fish and budgies.

You will find abstract classes used only in inheritance hierarchies. Once a class has decided to extend the
abstract class, it has used up its one and only inheritance “ticket,” since Java does not permit multiple class
inheritance. The characteristics of class Dog, for
example, will be either inherited from Animal or
added by the developer. If state and actions from
another class are desired within Dog, tough luck!
Your class can only inherit from one class at a
time. In the next section, You will see how to
bypass inheritance and adopt actions from other
classes that are outside the class inheritance
hierarchy.

SUMMARY POINTS

•	 An abstract class is a class with an incomplete
implementation. It is expected that a future class
that extends the abstract class will complete its
implementation.

•	 The abstract keyword is added to both the class
head and the header for any abstract methods
defined in the abstract class. Each abstract
method consists of only a header, a definition for
which will be provided by a future subclass.

•	 An abstract class can act as a valid data-type
reference variable, but abstract class data types
themselves cannot be used to instantiate an
instance object (i.e., used with the new operator).

•	 If a class extends an abstract class, it is
forced by the compiler to provide concrete
implementations of any abstract classes defined
by the abstract class.

QUICK PROBLEMS

	 1.	 Coding: Create an array of size five that can hold
objects of all three of the data types: Dog, Budgie,
and Fish. Write a method that will accept a refer-
ence to the array and, for each object, invoke its
.howToMove() method.

	 2.	 Think: How can ensuring common functional-
ity across related classes be a good thing for
developers?

	 3.	 Coding: Add an abstract method to the abstract
class Animal called .howToBathe(). Implement the
method in all subclasses, and return a description
as you see fit. Then using your method from quick
problem #1 earlier, invoke this new method along
with .howToMove().

Figure CC4.2. The Relationship among the Animal, Budgie, Dog, and
Fish Classes

496 • Companion Chapter 4 / Abstract Classes, Interfaces, and Generics

CC4.2 Interface Classes
Abstract classes provide added flexibility to the developer who wants to create a class that generally describes
some nonspecific entity. The developer can leave “the specifics” up to future subclasses to define. Flexibility is
increased as well by ensuring common actions and functionality across related classes in an inheritance hier-
archy. That is also a big weakness of abstract classes: the functionality is common only to related Java classes
in an inheritance relationship. Class inheritance, though useful, is typically less common in contemporary
development efforts because of the following:

•	 It increases the amount of tight coupling between classes in the inheri-
tance hierarchy as well as other classes that use them.

•	 Making a change to the class hierarchy can be difficult. Imagine replac-
ing the superclass with another: this will spur changes to (most likely
all) classes in the hierarchy below it.

•	 Each class can only inherit from one other class, limiting the adoptable
functionality of the classes in the hierarchy.

•	 Without an alternative, enabling polymorphic behavior among classes
not related to one another cannot be done. This would sometimes
be useful.

•	 Without an alternative, there is no guarantee that classes from separate
inheritance hierarchies have the same functionality, preventing code
already written to be flexibly adapted to work with other data types
from other class families.

Seeing these limitations, Java developers created a family of classes called
interfaces. The biggest benefit of an interface class is that it allows common
functionality to be adopted across multiple, unrelated classes. Secondly, a class can adopt, or implement,
functionality from multiple interfaces. And developers who want to add this functionality to their classes that
are already in a tightly coupled hierarchy can have those classes implement Java interfaces without making
changes to their classes’ core functionality. Interfaces bring a lot of benefits and of course added flexibility
to your development efforts.

There are certain things to keep in mind in regard to Java interfaces versus abstract classes:
•	 Interfaces allow common functionality to be implemented across several unrelated classes, allowing code

that expects this functionality in other classes to find it in yours as well.
•	 Unlike abstract classes, interface classes can only contain constant data field and abstract methods. They

cannot contain regular data fields, constructors, or nonabstract methods.
•	 Similar to abstract classes, interface classes cannot be instantiated using the new keyword.
•	 Also similar to abstract classes, an interface class can contain zero, one, or more abstract methods. You will

frequently see interface classes that contain no abstract methods called “marker” interfaces. Serializable
in the Java API is a great example of this.*

•	 Classes use the extends keyword to inherit from an abstract class, whereas classes use the implements
keyword to implement an interface.

•	 A class that implements an interface is forced to provide concrete definitions of all abstract methods
declared within the interface, similar to the subclass of an abstract class.

•	 An interface can inherit from another interface if needed, using the extends keyword. A class that
implements the subinterface must provide concrete definitions of all abstract methods declared by both
interfaces.

•	 An interface class in Java must be placed in its own .java file. Its abstract methods must have the public
access modifier.

*	 https://​docs​.oracle​.com/​en/​java/​javase/​17/​docs/​api/​java​.base/​java/​io/​Serializable​.html.

Figure CC4.3. Automobile Interface
Abstracting Details of the Engine from
the User

Source: “Classic Car Show” by A S Morton
Image is licensed under CC BY 2.0,
https://flickr​.com​/photos​/purpleseadonkey​
/14834486929/.

CC4.2 Interface Classes • 497

•	 Implementation of an interface across multiple, unrelated classes enables the use of polymorphic code
among those classes’ objects, as the interface behaves just like a data type.

•	 A class can implement multiple interfaces, whereas it can only inherit from one single abstract class.
•	 If omitted by the developer, the compiler assumes that data field variables in an interface are modified

with public static final, since interfaces can only contain constants and abstract methods.
•	 An interface is implicitly considered to be abstract also. The Java compiler will add the abstract keyword

for you in front of the interface keyword if you omit it. You are not required to place it there. For example,
you can create interface Climbing like so:

Code Snippet CC4.7
public abstract interface Climbing {
 public abstract double climbSpeed();
}

The compiler infers abstract on an interface class if not manually added. A key thing to remember here is
that an interface is not also an abstract class but is considered to be abstract in its nature.

To demonstrate how interfaces in Java work, within a new .java file, you can type the following code that
you will eventually use with the Animal class hierarchy exampled earlier:

Code Snippet CC4.8
public interface Feeding {

 public abstract String howToFeed();
}

For a Java interface, the class keyword is replaced with interface. Notice that there is only one abstract method
defined in the interface, .howToFeed(). Where an abstract class is usually leveraged to represent some general,
conceptual view of a real-world entity, interfaces are designed to focus on some sort of functionality or common
ability that a class can support. Contemporary Java developers have increasingly demonstrated the term “coding to
an interface,” preferring the use of interfaces over expanded class hierarchies and complex inheritance relationships.

Using Java interfaces allows for loose coupling between class objects. When a class implements an interface,
it “wraps” a very public and expected interaction ability around itself. Other classes can implement the
same interface. Code that expects the functionality defined by the interface can expect to find it in all the classes
that implement it and can interact with the objects of those classes. Loose coupling occurs because any code
interacting with those class objects does not need to know anything about the methods or internals of those
classes. When implementing an interface in your class, you are wrapping a “contractual” agreement around
your class. Your class then provides a way for other objects to “interface” with your objects in a loosely coupled
fashion. The big benefit here is that any changes made to the internals of your class and the way your objects
work will not impact the way the interface provides other classes access to your objects. Very flexible! Fig-
ure CC4.4 visualizes this interface wrapping.

The developer who wants to add addi-
tional functionality to their class can
choose to implement an interface and
will not need to make any changes to any
existing methods or to the class hierarchy
the class sits within. Subclasses of the
implementing class will simply inherit
the concrete definitions of the abstract
methods from the interface or can over-
ride them with their own definitions. This
minimizes the number of changes needed
to the classes in a class hierarchy when
additional functionality/compatibility
with other code is needed. Figure CC4.4. Visualizing a Class with Implemented Interface

498 • Companion Chapter 4 / Abstract Classes, Interfaces, and Generics

These changes can be demonstrated by implementing the Feeding interface in class Budgie from earlier in
the chapter (changes in bold):

Code Snippet CC4.9
public class Budgie extends Animal implements Feeding {
 private String name;

 public Budgie(int age, String skinType, String name)
 {
 super(age, skinType);
 this.name = name;
 }

 @Override
 public String howToMove()
 {
 return "Fly!";
 }

 @Override
 public String toString()
 {
 return "Budgie Name: "
 + this.name
 + super.describeAnimal();
 }

 // Concrete definition for abstract method
 // from interface Feeding
 @Override
 public String howToFeed()
 {
 return "Budgie - " + this.name
 + ": Seed, grit, and occasional "
 + "Spray Millet as a treat";
 }
}

Note that implementing interface Feeding simply requires the addition of the keyword implements followed
by the interface name at the end of the class header. Note as well that providing the concrete definition for the
interface’s abstract method required no changes to either the inheritance from Animal or the method code
that might cause issues for any potential subclasses of Budgie. Instance objects of class Budgie can self-report
how these animals should be fed.

In particular, objects of classes that implement interfaces are able to share common functionality with objects
of unrelated classes. Consider the creation of the two additional classes Car and Plant (ideally, you should
place each in its own dedicated .java file if you are coding along):

Code Snippet CC4.10
// Class Car
public class Car implements Feeding {
 private String make;
 private String model;
 private int year;

 public Car(String make, String model, int year)
 {
 this.make = make;
 this.model = model;
 this.year = year;

CC4.2 Interface Classes • 499

 }

 @Override
 public String toString()
 {
 return "Make: " + this.make
 + ", Model: " + this.model
 + ", Year: " + this.year;
 }

 // Concrete implementation of Interface Method
 @Override
 public String howToFeed()
 {
 return this.make + " "
 + this.model
 + ": Fuel it with gasoline or electricity.";
 }
}

// Class Plant
public class Plant implements Feeding {
 private String species;
 private String location;

 public Plant(String species, String location)
 {
 this.species = species;
 this.location = location;
 }

 @Override
 public String toString()
 {
 return "Plant Species: " + this.species
 + ", Location to Grow: " + this.location;
 }

 @Override
 public String howToFeed()
 {
 return this.species + ": Feed with water, "
 + "sunshine, "
 + "and occasional Fertilizer";
 }
}

Since an interface can be used polymorphically as a data type, objects from unrelated classes can be used
together and polymorphic actions performed upon them. Consider the following application code:

Code Snippet CC4.11
Budgie sweetie = new Budgie(2,"Feathers","SweetBaby");
Car forRunner = new Car("Caryoda","ForRunner", 2020);
Plant philo = new Plant("Philodendron","Indoor");

Feeding[] toFeedArray = new Feeding[5]; // Interface as data type
toFeedArray[0] = sweetie;
toFeedArray[1] = forRunner;
toFeedArray[2] = philo;
for (int i=0; i<toFeedArray.length;i++)

500 • Companion Chapter 4 / Abstract Classes, Interfaces, and Generics

{
 if (toFeedArray[i] != null)
 System.out.println(toFeedArray[i].howToFeed());
}

When run, this code produces the following output:
Budgie - SweetBaby: Seed, grit, and occasional Spray Millet as a treat
Caryoda ForRunner: Fuel it with gasoline or electricity.
Philodendron: Feed with water, sunshine, and occasional Fertilizer

Can you feed a car? Maybe someday . . .
The real benefit here is in implementing common functionality across three unrelated class types (i.e., classes

in separate class inheritance hierarchies). Implementing the functionality required minimal changes to the
code of each class and did not threaten how those classes functioned internally. Because the array toFeedArray
is declared with a data type of Feeding, you can say that the array can contain references to classes that have
implemented the Feeding interface.

Using the instanceof operator: At compile time, the Java compiler will check to ensure that the method
.howToFeed() is defined in the Feeding interface. You will notice as well that no methods of the actual
classes themselves are available at compile time. Your code does not need to know anything about how the
classes work internally to use them—the safe, external interface to the “public-facing code” is doing its job! If
you needed to, as in any polymorphic context, you could cast each object to its actual data type. Consider this
alteration to the code (changes in bold):

Code Snippet CC4.12
Budgie sweetie = new Budgie(2,"Feathers","SweetBaby");
Car forRunner = new Car("Caryoda","ForRunner", 2020);
Plant philo = new Plant("Philodendron","Indoor");

Feeding[] toFeedArray = new Feeding[5];
toFeedArray[0] = sweetie;
toFeedArray[1] = forRunner;
toFeedArray[2] = philo;
for (int i=0; i<toFeedArray.length;i++)
{
 if (toFeedArray[i] != null)
 {
 System.out.println(toFeedArray[i].howToFeed());

 if (toFeedArray[i] instanceof Budgie)
 System.out.println("\t"
 + ((Budgie)toFeedArray[i]).toString());

 if (toFeedArray[i] instanceof Car)
 System.out.println("\t"
 + ((Car)toFeedArray[i]).toString());

 if (toFeedArray[i] instanceof Plant)
 System.out.println("\t"
 + ((Plant)toFeedArray[i]).toString());
 }
}

This will produce the following output when executed:
Budgie - SweetBaby: Seed, grit, and occasional Spray Millet as a treat
 Budgie Name: SweetBabyAge: 2, Skin Type: Feathers
Caryoda ForRunner: Fuel it with gasoline or electricity.
 Make: Caryoda, Model: ForRunner, Year: 2020
Philodendron: Feed with water, sunshine, and occasional Fertilizer
 Plant Species: Philodendron, Location to Grow: Indoor

CC4.2 Interface Classes • 501

Checking each array location to see if its object is an instanceof each of the classes is awkward. Worse
yet, if objects from other classes that implement Feeding are used, then this code can get very tedious and
defeat the goal of increased code flexibility. This code can be simplified by remembering two important
points:

•	 The Interface class, like all other classes, inherits the .toString() method from the Object class. So
you can invoke (i.e., see) .toString() on each of the Interface references at compile time.

•	 At runtime, dynamic binding kicks in and checks the actual data type of the object actually referenced
from each array location. Because each object has a .toString() method implemented in each of its
classes, dynamic binding causes that implemented class version to be executed.

Remembering these two points, the instanceof code checks can be eliminated, this code can be simplified,
and it will produce the same output as seen earlier:

Code Snippet CC4.13
Budgie sweetie = new Budgie(2,"Feathers","SweetBaby");
Car forRunner = new Car("Caryoda","ForRunner", 2020);
Plant philo = new Plant("Philodendron","Indoor");

Feeding[] toFeedArray = new Feeding[5];
toFeedArray[0] = sweetie;
toFeedArray[1] = forRunner;
toFeedArray[2] = philo;
for (int i=0; i<toFeedArray.length;i++)
{
 if (toFeedArray[i] != null)
 {
 System.out.println(toFeedArray[i].howToFeed());
 System.out.println("\t" + toFeedArray[i].toString());
 }
}

Implementing multiple interfaces: Unlike with class inheritance, Java classes can implement multiple inter-
faces. Recall the Climbing interface displayed earlier (this time leaving off the abstract keyword):

Code Snippet CC4.14
public interface Climbing {

 public abstract double climbSpeed();

}

To implement an additional interface in a class, simply follow the class’s first implemented interface with a
comma and the name of the additional. Here is the complete listing for the Budgie class (including concrete
interface method definition for .climbSpeed()):

Code Snippet CC4.15
public class Budgie extends Animal implements Feeding, Climbing {
 private String name;

 public Budgie(int age, String skinType, String name)
 {
 super(age, skinType);
 this.name = name;
 }

 @Override
 public String howToMove()
 {
 return "Fly!";

502 • Companion Chapter 4 / Abstract Classes, Interfaces, and Generics

 }

 @Override
 public String toString()
 {
 return "Budgie Name: "
 + this.name
 + super.describeAnimal();
 }

 // Concrete definition for abstract method
 // from interface Feeding
 @Override
 public String howToFeed()
 {
 return "Budgie - " + this.name
 + ": Seed, grit, and occasional "
 + "Spray Millet as a treat";
 }

 // In class Budgie
 // Concrete method for Climbing interface
 @Override
 public double climbSpeed()
 {
 return 10.0 - (this.getAge() * 0.3);
 }
}

The concepts of climbing and feeding are two different activities. You can implement the same methods across
Car and Plant as well (add the new interface for Climbing to your classes and add the method to implement
.climbSpeed() to your classes as well):

Code Snippet CC4.16
public class Car implements Feeding, Climbing {

. . .

 // In class Car
 // Concrete method for Climbing interface
 @Override
 public double climbSpeed()
 {
 return 40.0;
 }
}

. . .

public class Plant implements Feeding, Climbing {

. . .

 // In class Plant
 // Concrete method for Climbing interface
 @Override
 public double climbSpeed()
 {
 return 0.04;
 }
}

CC4.3 Generic Interfaces, Classes, and Methods • 503

The multiple interfaces implemented in a class do
not have to be related to one another through any
hierarchy or even conceptually. In this manner, you
can add many actions to a class’s objects with mini-
mal coding and impact on those classes. Fig-
ure CC4.5 shows the structure of the class and
interface relationships so far.

*	 https://​docs​.oracle​.com/​en/​java/​javase/​17/​docs/​api/​java​.base/​java/​lang/​Comparable​.html.

SUMMARY POINTS

•	 An interface class allows a developer to define
functionality that is common across both related
and, importantly, unrelated classes.

•	 Interface classes in Java contain only constant
data fields and abstract methods.

•	 Whereas a class can only extend one other
class, it can implement one or many separate
interfaces.

•	 A class that implements a Java interface is
forced to provide concrete implementations of
any abstract methods defined in the interface.

•	 Interfaces can be used as valid data types
in reference variables but cannot be used to
instantiate any instance objects (i.e., used with
the new operator).

•	 It is common to see interfaces with no abstract
methods or constants at all. These are
commonly called “marker” interfaces.

•	 Interface classes in Java must be placed in their
own .java file.

QUICK PROBLEMS

	 1.	 Coding: Write the code for a small class Person
that implements the Feeding interface. Instantiate
an object of Person, add it to the toFeedArray array
in the earlier example, and observe the output.

	 2.	 Think: Why might the developer of these classes
not have implemented the Climbing interface in
the classes for Dog and Fish?

	 3.	 Coding: Add a new abstract method into the
Feeding interface called howMuchToFeed(). Save
your changes to the class. What errors/warnings
appear in the other classes that implement Feeding
afterward?

CC4.3 Generic Interfaces, Classes, and Methods
Implementing an interface from the Java API: The Java language comes with several interfaces that can be
implemented in classes to ensure object compatibility with code elsewhere in the Java language’s many classes.
A common example deals with sorting. The Comparable interface is used to give your class the ability for its
objects to be compared with one another in some aspect.* Since Comparable is an interface, you will decide in
your user-defined class how this comparison will happen via your concrete implementation of this interface’s
only abstract method. Here is the entire source code for interface Comparable:

Figure CC4.5. Relationship of Classes with Implemented
Interfaces

504 • Companion Chapter 4 / Abstract Classes, Interfaces, and Generics

Code Snippet CC4.17
public interface Comparable<T> {

 int compareTo(T o);

}

This interface happens to be a generic-type interface, meaning that when implemented, the data type for the
class objects that comparisons will occur between is provided, replacing the T generic type. The Oracle docu-
mentation recommends developers implement their .compareTo() method to return the following values:

•	 A value less than zero if your object is compared to be less in some value than the object you are compar-
ing it to

•	 A value greater than zero if your object is compared to be greater in some value than the object you are
comparing it to

•	 A value exactly equal to zero if the value of your object and the value of the object you are comparing
against are exactly the same (or the “same” in whatever way you define it)

To implement this interface, consider the following updated code for class Budgie (additions in bold):

Code Snippet CC4.18
public class Budgie
 extends Animal
 implements Feeding, Climbing, Comparable<Budgie> {

 private String name;

 public Budgie(int age, String skinType, String name)
 {
 super(age, skinType);
 this.name = name;
 }

 @Override
 public String howToMove()
 {
 return "Fly!";
 }

 @Override
 public String toString()
 {
 return "Budgie Name: "
 + this.name + " "
 + super.describeAnimal();
 }

 // Concrete definition for abstract method
 // from interface Feeding
 @Override
 public String howToFeed()
 {
 return "Budgie - " + this.name
 + ": Seed, grit, and occasional "
 + "Spray Millet as a treat";
 }

 // In class Budgie
 // Concrete method for Climbing interface

CC4.3 Generic Interfaces, Classes, and Methods • 505

 @Override
 public double climbSpeed()
 {
 return 10.0 - (this.getAge() * 0.3);
 }

 // Concrete implementation for compareTo()
 // Interface Comparable
 @Override
 public int compareTo(Budgie o)
 {
 if (this.getAge() < o.getAge())
 return -1; // This object's age is less
 else if (this.getAge() > o.getAge())
 return 1; // This objects age is greater
 else
 return 0; // This object's age is the same as parameter's
 }
}

Notice in the class header that Comparable is an additionally implemented interface. Because it is a flexible,
generic-type interface, the data type of Budgie is provided. This allows the use of the Budgie data type as the
parameter’s data type for the concrete implementation of the .compareTo() method. Remember, if you imple-
ment an interface in your class, you are forced to provide concrete implementations for all the interface’s abstract
methods!

To take advantage of this interface implementation, consider the following application code that first simply
creates five objects, places them in a generic-type ArrayList, and then prints out returned String from each
.toString() invocation:

Code Snippet CC4.19
// Add import for java.util.* to your application class
ArrayList<Budgie> parrotList = new ArrayList<>();

parrotList.add(new Budgie(2, "Feathers", "Pretty Bird"));
parrotList.add(new Budgie(4, "Feathers", "Sassy Squawk"));
parrotList.add(new Budgie(6, "Feathers", "Old Boy"));
parrotList.add(new Budgie(1, "Feathers", "Pip Squeak"));
parrotList.add(new Budgie(5, "Feathers", "Sweet Beak"));

for (Budgie b: parrotList)
{
 System.out.println(b);
}

This will produce the following output:
Budgie Name: Pretty Bird Age: 2, Skin Type: Feathers
Budgie Name: Sassy Squawk Age: 4, Skin Type: Feathers
Budgie Name: Old Boy Age: 6, Skin Type: Feathers
Budgie Name: Pip Squeak Age: 1, Skin Type: Feathers
Budgie Name: Sweet Beak Age: 5, Skin Type: Feathers

The Collections class contains several static methods to perform various data operations on collections in
Java (similar to how the Arrays class in chapter 7 helped perform data operations on arrays).* The ArrayList<E>
class implements the Collection interface, which means it can be operated upon by the methods in the

*	 https://​docs​.oracle​.com/​en/​java/​javase/​17/​docs/​api/​java​.base/​java/​util/​Collections​.html.

506 • Companion Chapter 4 / Abstract Classes, Interfaces, and Generics

Collections class (notice here a great reinforcement in your learning: implementing interfaces can make
your class compatible with preexisting code that expects that interface’s methods to be present).*

You can use the static .sort() method of the Collections class to sort the contents of the ArrayList<E>
called parrotList. Printed here is the signature of the .sort() method from Oracle’s official documentation:
Static <T extends Comparable<? super T>> void sort(List<T> list)

The statements in brackets will be described later. For now, focus on the parameter for the .sort() method.
List<T> is another generic-type interface. So the usage of .sort() requires that you provide an object for the
parameter whose class has implemented interface List<T>. Luckily for us, ArrayList<E> has implemented
the interface List<T>. You can sort these objects by doing the following (additional code in bold):

Code Snippet CC4.20
// Add import for java.util.* to the application
ArrayList<Budgie> parrotList = new ArrayList<>();
parrotList.add(new Budgie(2, "Feathers", "Pretty Bird"));
parrotList.add(new Budgie(4, "Feathers", "Sassy Squawk"));
parrotList.add(new Budgie(6, "Feathers", "Old Boy"));
parrotList.add(new Budgie(1, "Feathers", "Pip Squeak"));
parrotList.add(new Budgie(5, "Feathers", "Sweet Beak"));

for (Budgie b: parrotList)
{
 System.out.println(b);
}

Collections.sort(parrotList); // invoke .sort()
System.out.println("\n");

// Print the list again . . .
for (Budgie b: parrotList)
{
 System.out.println(b);
}

This will now produce the following expanded output:
Budgie Name: Pretty Bird Age: 2, Skin Type: Feathers
Budgie Name: Sassy Squawk Age: 4, Skin Type: Feathers
Budgie Name: Old Boy Age: 6, Skin Type: Feathers
Budgie Name: Pip Squeak Age: 1, Skin Type: Feathers
Budgie Name: Sweet Beak Age: 5, Skin Type: Feathers

Budgie Name: Pip Squeak Age: 1, Skin Type: Feathers
Budgie Name: Pretty Bird Age: 2, Skin Type: Feathers
Budgie Name: Sassy Squawk Age: 4, Skin Type: Feathers
Budgie Name: Sweet Beak Age: 5, Skin Type: Feathers
Budgie Name: Old Boy Age: 6, Skin Type: Feathers

Notice that with the second print, the ArrayList<E> has been sorted! The Budgie objects now appear in
the list sorted in order of age ascending. The .sort() method invokes the .compareTo() method that you
concretely implemented in the Budgie class, comparing each Budgie instance object to another. For each
comparison, the .compareTo() method returned values of −1, 0, or 1 based on ages that are less than, equal
to, or greater than the compared objects, respectively. This enabled the .sort() method to sort the list based
on each object’s age data field. Very convenient! Other interfaces in the Java API include ones like Cloneable
and Serializable as well as ones covered in companion chapter 5 like List, Set, and Queue.

*	 https://​docs​.oracle​.com/​en/​java/​javase/​17/​docs/​api/​java​.base/​java/​util/​Collection​.html.

CC4.3 Generic Interfaces, Classes, and Methods • 507

Defining generic methods: Now that you have used generic syntax like that found in ArrayList<E> and
Comparable<T>, generic typing can be elaborated upon. In the earlier examples, you may have noticed a letter
T placed where a data-type name would normally be expected. This is called a generic-type parameter and is
what enables methods of classes that are generically typed to have flexibility in terms of the data types of
objects they can accept. For example, if you wanted to create a generic-type method that would invoke the
.toString() of the objects passed to it, you could do so as follows (generic-type code in bold):

Code Snippet CC4.21
public static <T> void printObjectDetails(T obj)
{
 System.out.println(obj);
}

The type parameter must be specified in angle brackets (<>) prior to the return type of the method. Then the type
parameter can be used without the brackets in the parameter of the method to specify the data type of the accepted
reference variable. You can use the type parameter for as many parameters as you need:

Code Snippet CC4.22
public static <T> void someMethod(T obj, T objTwo)
{
 // Code to act on the objects.
}

Also, you can specify multiple type parameters with separate letters to indicate that separate data types should
be used for each:

Code Snippet CC4.23
public static <T, S> void anotherMethod(T obj, S objTwo)
{
 // Code to act on the objects.
}

Going back to the definition of the printObjectDetails() generic method earlier, you can test it out like so:

Code Snippet CC4.24
printObjectDetails(new Budgie(2, "Feathers", "Nice Bird"));
printObjectDetails(new Dog(4, "Fur", "Spottled"));
printObjectDetails(new String("Hello there!"));

The output when this application code is executed is the following:
Budgie Name: Nice Bird Age: 2, Skin Type: Feathers
Dog (best friend) Fur Color: Spottled Age: 4, Skin Type: Fur
Hello there!

In each case, a reference to an actual data-type object is provided for the parameter when the method is
invoked. You would never actually try to provide a T. Some things to remember with type parameters:

•	 A type parameter can consist of a word, but programming convention specifies a single, uppercase letter.
•	 Various letters are used by convention: T for a data type; E for an element of a data sequence; K for a key

(as in a Map or Hash); V for a value; and S, U, and V for other normal data types if additional are needed.
•	 In all cases, the instance object of a complex data type must be used when you provide a parameter to

replace the generic in the usage. In the case of primitive data types, the wrapper class versions of them
will autobox these values: Integer for int, Double for a simple double, and so on.

•	 A concrete class must be provided as a substitute for the type parameter at compile time.
•	 You cannot use a generic-type parameter in a static context, like with a static method or static data field

(this is due to the way the Java compiler resolves data-type names at compile time vs. runtime).
•	 You cannot use a type parameter with the new operator to create an instance object or use it to create an

array. For example, the following uses are not allowed:

508 • Companion Chapter 4 / Abstract Classes, Interfaces, and Generics

E aVar = new E(); // Not allowed
E[] anArray = new E[10]; // Not allowed

Bounding the type parameter and using wildcard type parameters: To ensure that things work like they
should, developers of generic methods can “bound” the type parameter to a range of classes. Consider the
Budgie class that has implemented the Comparable<T> interface. Suppose you want to restrict the objects
that can be added to an ArrayList<E> to ensure that they have implemented the Comparable<T> interface
and that only Budgie objects are passed to it and used in the ArrayList<E>. Consider the following generic
method along with application code that uses it:

Code Snippet CC4.25
// Application Code
ArrayList<Budgie> birdList = new ArrayList<>();
Budgie aBird = new Budgie(4, "Downy", "Baby Bird");

addToArray(aBird, birdList);

System.out.println(birdList.get(0));

. . .

// Generic Application Method
public static <T extends Comparable<T>>
 void addToArray(T obj, ArrayList<T> array)
{
 array.add(obj);
}

This produces the following output:
Budgie Name: Baby Bird Age: 4, Skin Type: Downy

Notice that the data-type parameter in brackets before the method’s return type can be thought of as a “rule”
that specifies what ranges of data types will be allowed to be substituted for the type parameter when the
method is used. Remember that Comparable<T> is a generic-type interface that is implemented in class Budgie
by giving it the Budgie data type: Comparable<Budgie>. The data-type parameter <T extends Comparable<T>>
simply says, “Only data types that have implemented Comparable for their data types will be accepted as a
substitute for T in the parameter list of this method.” What has been done here is to restrict the T parameter
by setting an upper bound upon it. Only data types from Comparable<T> and extended “downward” will be
accepted as a substitute. Every type parameter has an upper bound on it, even if one is not provided. For
example, if you see
<T>

used in a generic method, this has an implied upper bound of Object, equivalent to the following:
<T extends Object>

Type parameters can be specified with a wildcard character as well. Consider the following: Budgie might
be a subclass of abstract class Animal, but due to the way the Java compiler resolves data types at compile time,
ArrayList<Budgie> is not a subclass of ArrayList<Animal>. In order to specify that an ArrayList<E> can
be used for either of these, you can use an upper-bound wildcard character:

Code Snippet CC4.26
public static void printListLength(ArrayList<? extends Animal> list)
{
 // Code for method.
}

CC4.3 Generic Interfaces, Classes, and Methods • 509

You will use wildcard characters inside the type parameter brackets for generic-type class data types, like
ArrayList<E> or Map<K,V>, for example. In the generic-type method, <T extends Animal> would act the
same way for a direct parameter generic data type, as seen earlier.

•	 Note: The use of a lower-bound wildcard type parameter character is valid in Java but is commonly thought
to not be too useful. For example,

<? super Animal>

would not be too useful, as the only class above Animal is Object. You will not see these used too
often. The use of a lower bound with a regular type parameter is not allowed.

Generic-type classes: Class definitions can take advantage of the flexibility of generic types as well. Consider
the following definition for a class Owner that can take “possession” of objects of any of the classes you have
implemented so far in the chapter:

Code Snippet CC4.27
public class Owner<T> {

 private T object;
 private String name;

 public Owner(T object, String name)
 {
 this.object = object;
 this.name = name;
 }

 public String toString()
 {
 return "Owner: " + this.name
 + ", Owns: "
 + this.object.toString();
 }
}

Note that upon usage and just like with the methods, it uses erasure to get rid of the generic-type parameter
T and replace it with the actually provided type parameter at runtime. You can test class Owner like so:

Code Snippet CC4.28
Budgie sweetie = new Budgie(2,"Feathers","SweetBaby");
Car forRunner = new Car("Caryoda","ForRunner", 2020);
Plant philo = new Plant("Philodendron","Indoor");

Owner<Budgie> birdOwner = new Owner<>(sweetie, "Sarah");
Owner<Car> carOwner = new Owner<>(forRunner, "Julie");
Owner<Plant> plantOwner = new Owner<>(philo, "Adara");

System.out.println(birdOwner.toString() + "\n"
 + carOwner.toString()
 + "\n" + plantOwner.toString());

This application code will produce the following output:
Owner: Sarah, Owns: Budgie Name: SweetBaby Age: 2, Skin Type: Feathers
Owner: Julie, Owns: Make: Caryoda, Model: ForRunner, Year: 2020
Owner: Adara, Owns: Plant Species: Philodendron, Location to Grow: Indoor

Notice that since the Owner<> constructor requires two parameters, a data type compatible for T for the
object owned and the name of the owner, you provide these at usage. The ability to upper-bound the data-type
parameter applies to a class as well. Consider the following ZooCareGiver class:

510 • Companion Chapter 4 / Abstract Classes, Interfaces, and Generics

Code Snippet CC4.29
public class ZooCareGiver<T extends Animal> {

 private T animal;
 private String careGiverName;

 public ZooCareGiver (T animal, String careGiverName)
 {
 this.animal = animal;
 this.careGiverName = careGiverName;
 }

 public String toString()
 {
 return "Caregiver: " + this. careGiverName
 + ", Cares for: "
 + this.animal.toString();
 }
}

In this way, you can ensure that a Car is not accidentally admitted into the zoo and placed into an enclosure.
They generally do not like to be cooped up like that; they get temperamental.

SUMMARY POINTS

•	 Many interfaces and classes in the Java API are
generically typed, meaning that they can process
objects of many different data types using only
one implementation of code. Examples are
Comparable<T> and ArrayList<E>.

•	 Generic-type classes and methods use a type
parameter to indicate the rule or allowance for
what range of data types are allowed to be used
as a substitute for the parameter.

•	 An object of a concrete Java class must be used
in place of a type parameter in generic-type code.

•	 General convention calls for a single uppercase
letter to be used to represent a generic-type
parameter. T (for a data type) is commonly used

along with E (an element of a sequence of a
particular data type).

•	 Generic-type parameters cannot be used to
instantiate objects (i.e., used with the new
operator).

•	 Bounding a type parameter specifies a range
of concrete data types that are allowed for
substitution. Typically, upper bounds are much
more common and use the extends keyword for
the definition.

•	 When a generic-type class or interface data type
is used as a parameter in generic-type code, the
wildcard character ? can be used to specify the
bounding within its generic typing brackets.

QUICK PROBLEMS

	 1.	 Coding: Write a small class called Feeder that is
generically typed to accept a parameter type of any
class that has implemented the Feeding interface.
Accept a String name and String PhoneNumber for
each Feeder object. Include a method that prints
the Feeder object’s details along with the return
of the .howToFeed() method from the T object’s
concrete implementation.

	 2.	 Think: How does generic typing of methods and
classes provide future flexibility and future compat-
ibility of code/logic written today?

	 3.	 Coding: Implement the Comparable interface for
the Car class. Test the usage out by adding several
Car objects to an ArrayList<E> and sorting the
contents based on vehicle year.

CC4.3 Generic Interfaces, Classes, and Methods • 511

Summary
In this chapter, you have learned the basics of using
abstract classes, interface classes, and generic-type
code in Java. With all three of these syntax techniques,
the idea is to increase the flexibility of Java code so
it can work with new data types without the need
for a major overhaul of the logic. By implementing
these techniques correctly, your code can be “future-
proofed” to work with classes that may not exist until
far in the future. Since one of object-oriented pro-
gramming’s many goals is to help write applications
with more functionality in less code, these techniques

are a must-learn for any developer wishing to come
anywhere near accomplishing this goal in their work.
For information systems professionals, the flexibility
these techniques bring to modeling current data and
adding new entities is extremely valuable. Their value
to you can be assured in the fact that not many infor-
mation systems students study these topics in-depth.
With these tools under your belt, you will find yourself
thinking far ahead in your data model and application
design, resulting in far more sophisticated, flexible,
and intelligent Java applications

Practice Problems
Terminology
Match the following terms from the chapter with their most appropriate definition:

	 1.	 Class inheritance 	 a.	 Relationship between two classes where one uses the other and depends on the internal interface of
that class. Changes to the used class can impact the functionality of the using class.

	 2.	 Abstract class 	 b.	 Keyword used in the Java syntax to indicate an inheritance relationship between two classes.

	 3.	 Superclass 	 c.	 Flexibility provided in both methods and classes where the data type used by each can be
determined at runtime via application code.

	 4.	 Subclass 	 d.	 Generic-type interface in the Java API that provides the ability to relate two objects using some
characteristic or aspect of each.

	 5.	 Concrete definition 	 e.	 Syntax that symbolically defines which data types will be “flexible” in a generic-type method or class.

	 6.	 Abstract method 	 f.	 A runtime operation where the Java compiler replaces generic-type parameters with the actual data
type provided by the application’s code.

	 7.	 Tight coupling 	 g.	 In a class inheritance relationship, this class provides public members and methods to other classes
that inherit from it.

	 8.	 Interface class 	 h.	 Automatic operation by the Java compiler that “wraps” a primitive data type in its complex data-type
equivalent class.

	 9.	 Implicit abstract 	 i.	 Generic-type class in the Java API that provides a dynamically resizable array whose elements can
contain any data type provided to it by the application code at runtime.

	10.	extends 	 j.	 Specifying a range of data types that fall in a class relationship hierarchy that are allowed for use
when substituting for generic-type parameters.

	11.	implements 	 k.	 Specifying a range of data types that fall in a class relationship hierarchy that are allowed for use
when substituting for generic-type parameters in a preexisting generic-type class or interface.

	12.	 Loose coupling 	 l.	 Relationship between two classes where one uses another class’s adopted interface instead of
directly accessing that class’s internal methods. Changes to the target class’s internals will not
impact the functionality of the using class.

	13.	 Generic typing 	m.	 Class with an “incomplete” implementation, where some methods are missing a full definition that
will be provided by future, inheriting subclasses.

	14.	Comparable<T> 	 n.	 The implied nature of an interface class, provided if the developer omits the abstract keyword from
the interface header.

	15.	 Type parameter 	 o.	 Keyword used in the Java syntax to indicate the adoption of an interface definition in a class.

512 • Companion Chapter 4 / Abstract Classes, Interfaces, and Generics

	16.	ArrayList<E> 	 p.	 A full definition for a class method is provided to fill in the gaps present from an inherited class’s
method definition.

	17.	 Erasure 	 q.	 Technique where a class adopts the public members and methods of another class through a
parent/child class relationship.

	18.	 Autoboxing 	 r.	 Class that contains only constants and abstract methods. Intended to provide functional
commonality across both related and unrelated classes.

	19.	 Bounding 	 s.	 In a class inheritance relationship, this class adopts the public members and methods of another
class higher than it in the hierarchy.

	20.	 Wildcard character 	 t.	 Member method of a class that is missing a code body, causing its definition to be incomplete.

Find the Error
In each of the following problems, carefully examine
the code given, and determine the error(s)/issue(s)
with each. Keep in mind, the error(s) could be syntax

(code) or logic (intended outcome) based or both!
For the following, assume that any classes used have
already been properly defined and/or imported.

	 1.

ArrayList[Person] personList = new Person[30];
personList.add[new Person()];

	 2.

ArrayList[Person] personList = new Person[30];
personList[2] = new Person();

	 3.

private interface Locomotion
{
 private String howToMove();
}

	 4.

public class Fish implements ArrayList<> extends Animal
{
 // Members of class…
}

	 5.

public class ShippingBox(T)
{
 private String contents;
}

Think about It
	 1.	 What are the similarities between classes and

abstract classes when it comes to class inheri-
tance? What are the differences?

	 2.	 What are some of the rules for implementing
an abstract class?

	 3.	 What happens if an abstract class extends another
abstract class?

	 4.	 Why does it make sense that an abstract class
cannot be instantiated?

	 5.	 What is unique about abstract methods?

	 6.	 Why are abstract methods not able to have the
private or final modifiers applied to them?

	 7.	 How do abstract classes serve as valid data types?
	 8.	 What is a concrete class?
	 9.	 How do abstract classes and interface classes

differ?
	 10.	 What is the difference in how an interface class is

used with a “normal” class versus how an abstract
class is used?

CC4.3 Generic Interfaces, Classes, and Methods • 513

	 11.	 What are the benefits of implementing interfaces
in your Java classes?

	 12.	 How do interfaces enable the concept of “loose
coupling” between classes in Java?

	 13.	 What changes are required of a class that imple-
ments an interface class?

	 14.	 How do class inheritance and interface implemen-
tation differ?

	 15.	 How is a generic-type class or method useful, and
how does it add flexibility to your application’s
code?

	 16.	 What is the generic-type parameter, and how is it
used in generic-type code?

	 17.	 What are the general conventions for naming a
generic-type parameter?

	 18.	 When can a generic-type parameter not be used?
	 19.	 What will happen if a primitive data type is used

where a generic-type parameter is expected at
runtime?

	 20.	 Describe what generic-type parameter bounding is.
How are wildcard characters related to this? How
are they different?

Short Syntax Problems
	 1.	 Write an abstract class called ConsumerItem. The

consumer item class will have the following mem-
bers and data fields:
•	 double price
•	 String ownerName
•	 int age
•	 abstract double value()

Also, write a concrete class called Vehicle that
extends ConsumerItem. Provide a concrete defini-
tion for the inherited method (value returned is 5%
of price reduced for every year of age). Test out
class Vehicle in an application.

	 2.	 Write an interface class called AuctionProduct.
The interface will have one abstract method:
.startingBid(). Have the ConsumerItem class from
short syntax problem #1 implement this interface.
Provide a concrete implementation of the inter-
face’s method where appropriate (starting bid =
80% of value for a Vehicle). Test everything out in
an application.

	 3.	 Write an interface class called AuctionFurniture
that extends AuctionProduct from short syntax
problem #2. This interface has one abstract method:
.bidIncrements(). Next, write a concrete class
called Furniture that extends the ConsumerGood
abstract class from short syntax problem #1 and
implements the AuctionFurniture interface. Pro-
vide concrete definitions for any inherited methods
(starting bid for furniture is 60% of value; bid incre-
ments for auction furniture is 10% of price, meaning
the auctioneer will go up by 10% of the original price
every time a bid is given). Test everything out in an
application.

	 4.	 Write a static, generic-type method called
printAuctionDetails() that accepts references
to objects that implement the AuctionProduct
interface. Have the method print the starting bid
value, and if the object is a piece of furniture, have
it also print the bid increment value. Use a loop in
an application, and send several objects of Vehicle
and Furniture types to it.

Full Problems
	 1.	 Fully expand the auction system from short syntax

problems #1 through #4. Add Car and Truck as
subclasses of Vehicle. Add Couch and Bed as sub-
classes of Furniture. Also, add a new class hier-
archy with an abstract class for RealEstate. Add
classes ResidentialHome and Condo as subclasses
that extend RealEstate. Implement real-world
appropriate data fields and methods for each of
these classes. Provide concrete implementations
for the .startingBid() method as you implement
AuctionProduct across all these classes.

	 i.	 Add a menu system that has two main
options: Enter Items and Run Auction.

	 ii.	 Enter Items will allow the user to
create a new auction item of any of
the above types: Car, Truck, Couch, Bed,
ResidentialHome, or Condo.

	 iii.	 Once items have been entered, the option
“Run Auction” will loop upon each item
in the inventory. (Hint: You need a way
to store all these in some sort of data
structure as the “inventory.”) For each
item, bidding will start at the starting bid
price and go up by a predefined amount,
if specified for a class. The user can
enter new bids or can enter −100 when

514 • Companion Chapter 4 / Abstract Classes, Interfaces, and Generics

the auction is over. Use generic typing
whenever appropriate throughout your
implementation.

	 iv.	 Once the auction has finished, print out
each item along with its value versus the
amount paid for it in the auction. Print the
profit per item.

	 2.	 Implement a bank account system. Create an
abstract class called BankAccount with three
subclasses: CheckingAccount, SavingsAccount,
CDAccount. Implement an abstract method in
BankAccount called .calculateInterest(). Each
account type will have a separate interest rate,
frequency of interest accrual (monthly, quar-
terly, or yearly). Implement an interface called
InterestInformation that will define an abstract
method .reportInterestInformation() where any
implementing classes can report the nature of their
interest-bearing characteristics (rate, frequency,
and type of account).

	 i.	 Create an application that will allow a
user to create a new account. Represent

this account with a generic-type
CustomerAccount class that can accept
an account object of any of the three
bank account class types listed earlier.

	 ii.	 Each account object should be capable
of storing a list of deposits and
withdrawals and capable of reporting
the balance. Each account will have
different withdrawal rules: checking:
unlimited withdrawals down to balance of
$0; savings: ten withdrawals a year; CD:
only one withdrawal a year.

	 iii.	 For every deposit made, invoke the
.calculateInterest() method, and
print to the screen what the next interest
payment will be for the account.

	 iv.	 For every account, give the user the
ability to print the last ten activities on
the account.

	 v.	 Use generic typing wherever it is
appropriate throughout your
implementation.

	cc4

