
Copyright © 2024 Prospect Press. All rights reserved. For use with Fundamentals of Java Programming for
Information Systems by Jeremy D. Ezell

C o m p a n i o n C h a p t e r 5

 Java Collections Framework

What You Will Learn in This Chapter
The Java Collections framework contains class
implementations of data structures that develop-
ers can find incredibly useful in many information
systems and application contexts. Industry- standard
data collection approaches such as resizable arrays,
stacks, queues, sets, and maps (with hashing) are all
implemented through the classes of the framework.
Developers who want to take advantage of these
data- handling approaches in memory can use the
Java implementations, which have been highly opti-
mized for speed and efficiency, without having to
implement their own versions. Much of the func-
tionality of these classes will also perform other
complex data- organizing tasks for the developer,
saving them even more time to focus on the major
business requirements of an information systems
implementation instead. These collection classes
offer a great deal of flexibility and power in easy- to-
use implementations.

Specifically, this chapter will help you do the
following:

 1. Learn about the nature of the Java Collections
framework and its use of interface classes and
abstract methods to implement interoperability
across the classes of the framework

 2. Learn how to fully use the ArrayList<E> class and
leverage features of the Collections framework
and its methods

 3. Learn about the nature of stacks, queues, and
sets; their specific implementations in the Java
Collections framework; and how to create and
use them effectively

 4. Learn about the nature of the Iterable<T> interface,
Iterator<E> class, and how these provide a com-
mon way for Java code to interact with many of the
Collections classes

 5. Learn about the nature of a map data structure
and its specific implementations in Java and how
to create and use them effectively

 6. Understand how to apply many of these data struc-
tures to solve real-world, business-related problem
scenarios

Opening Scenario
“Speed and security. We must be able to demonstrate
to the client that the system is capable of efficient
data handling and processing”— your project lead for
the mom- and- pop grocery store IS project started
off the most recent team meeting with this proclama-
tion. A recent meeting with the client yielded stories
of how they observed “slow and buggy” software pack-
ages from other vendors, vendors who are currently
trying to lure them away from your team’s efforts.

Taking these fears to heart, you begin discus-
sions with your colleagues on the implementation
team. “We should take advantage of the data struc-
tures built into the language for handling in- memory

data like inventory and so on,” one team member
commented. In your research on creating efficient
searching of inventory items, you skimmed the docu-
mentation for the ArrayList<E> class in Java but
noticed discussion of a “Collections framework” that
offers much more than just ArrayList<E>. Backing
this up is the research you have done showing that
some Java classes have been implemented that are
“highly efficient” at arranging and retrieving data from
array- like objects. This certainly sounds like the right
direction to go in giving the system “speed.”

You feel confident that a full understanding of
what each major class in the framework does and its

516 • Companion Chapter 5 / Java Collections Framework

advantages over simple arrays will help a great deal
in keeping in- memory data processing speedy and
efficient.	The	team	feels	that	demonstrating	these	data	
structures to the client would be a big step toward

* https:// docs .oracle .com/ en/ java/ javase/ 18/ docs/ api/ java .base/ java/ util/ doc -files/ coll -overview .html.
† https:// docs .oracle .com/ en/ java/ javase/ 18/ docs/ api/ java .base/ java/ util/ Collection .html.
‡ https:// docs .oracle .com/ en/ java/ javase/ 18/ docs/ api/ java .base/ java/ util/ Collections .html.

alleviating their fears. After wrapping up some other
areas	of	research	and	functionality,	you	once	again	dive	
into	Java	documentation,	hoping	to	fully	understand	
the classes of the Java Collections	framework . . .

 CC5.1 Classes of the Java Collections Framework
A collection is simply a grouping of data that
shares some common nature and is organized in
a purposeful and useful manner. You have worked
with a collection in a basic way through the use
of arrays (see chapter 7). For example, a list of
the names of cities could be considered a collec-
tion. In most programming languages, the abil-
ity to create and work with a collection has been
accomplished through the use of what are called
data structures. An array is a data structure, for example. These are usually objects (i.e., “complex data type”)
with an internal structure that is designed for the storage and processing of a collection (i.e., sequence) of data.

The Java Collections framework is a family tree of interfaces, abstract classes, and their concrete imple-
mentations (see companion chapter 4 for the basics on these class types) that enables developers to create and
use sophisticated data structures to store and process data. The Collections framework emerged from what
was previously just a grouping of classes that, while officially unrelated to one another, shared a common data-
handling intent. By redesigning older classes like Vector, Stack, Properties, and Dictionary; creating new
classes; and connecting various “family trees” of these old and new classes through the use of interfaces, the
Collections framework emerged. Oracle’s technical note documentation regarding the Collections frame-
work mentions its many benefits: unifying classes that are intended to work with collections of data under a
common API through interfaces, providing computationally efficient implementations of these data structures
in Java preventing developers from having to “roll their own” versions, using object- oriented principles in the
design of the Collections classes to ease their use for new developers, and increasing the interoperability
and extensibility of these classes, among other benefits.*

Within the field of information systems, collections of data are very common. Typically these are stored in
a database table, but there are often occasions when data needs to be manipulated in memory prior to a database
write operation. The reverse is also true: often, data is read in from a database and manipulated in memory
during system usage. Lists of usernames and user accounts, lists of project tasks, and collections of inven-
tory items are common collections dealt with among many others in business contexts. So it is beneficial to
explore the Java Collections framework and see how the data structures implemented within it work and
how they can be useful to us. Figure CC5.2 shows a partial map of the relationships between the classes in
the Java Collections framework.
ArrayList<E> and methods of the Collection<E> interface: You have already been introduced to and

worked with the ArrayList<E> class several times in this textbook, so it is a great starting place for our explora-
tion of the Collections framework. Notice that in figure CC5.2, the interface class Collection<E> is the
top- level class of most of the Collections framework.† Be careful not to confuse the Collection<E> interface
with the utility class Collections, which is also a member of the Java Collections framework.‡ The latter
contains mostly static methods that provide convenient operations on instance objects of classes in the
Collections framework (like ArrayList<E>, which we worked with in previous chapters). The Map<K,V>

Figure CC5.1. Visual of a Java LinkedList<String> Data Structure

CC5.1 Classes of the Java Collections Framework • 517

interface class serves as the top- level class for the “second half ” of the Collections framework, providing a
common structure and behavior for a more complex data structure that we will discuss later in the chapter.

As you can see in figure CC5.2, there are several subinterfaces to Collection<E> and Map<K,V>. Imple-
menting these are numerous abstract classes, and inheriting from these with concrete implementations are
numerous concrete classes. For many examples that you will explore in this chapter, the interface will occasion-
ally be used as the reference type and the concrete class as the instantiated type (see companion chapter 4 for
details on how interfaces can be used in this manner). For example, consider the two following instantiations
of an ArrayList<E> object:

Code Snippet CC5.1
List<Integer> myArrayList = new ArrayList<>();

ArrayList<Integer> myArrayList2 = new ArrayList<>();

Both are valid. Since ArrayList<E> implements the List<E> interface, the interface can be used as the reference
type for the ArrayList<E> instance object. But the second line of code is more common for ArrayList<E>.

You might notice a type parameter being used, as these interfaces and classes are generic type (see com-
panion chapter 4 for details on generic classes). This gives developers flexibility to use any type of values or
objects in the data structures created by instantiating these classes. Remember that only a complex data type
can be used for a type parameter, whereas primitives cannot. Java conveniently provides wrapper classes (all of
them subclasses of class Number) and provides the autoboxing/autounboxing functionality to convert between
primitives and their wrapper class versions for you.* So if you want an ArrayList<E> of int values, you will
need to use the wrapper class Integer. Java will perform the conversion for us.

* https:// docs .oracle .com/ en/ java/ javase/ 18/ docs/ api/ java .base/ java/ lang/ Number .html.

Figure CC5.2.	Partial,	Simplified	Map	of	the	Java	Collections Framework

518 • Companion Chapter 5 / Java Collections Framework

The following are some overall features of the Collections framework to keep in mind:
• The data structures created by the classes of the Collections framework are dynamically resizable. They

will grow and shrink as you add to and remove elements from them.
• Since interfaces provide a commonality across these classes but do not dictate functionality, all subinterfaces

and classes of the Collections framework are able to implement various tasks like adding, removing,
indexing (or not), and so on for their data structures in ways that are unique to their purpose. They may
share functionality with other Collections classes but implement it in different and unique ways.

• As you have learned, since interfaces unify the Collections classes in the framework, any Java code that
expects a parameter type of one of the interfaces can use objects from across the Collections framework
classes.

• The classes in the framework implement industry- standard and algorithmically efficient behaviors for their
data structures, such as adding, removing, searching, and sorting. You do not have to code these on your
own or worry about low- level details for handling the data in the structures, freeing you to focus on the
larger problem of the system being implemented.

For the classes that implement the Collection<E> interface, there are several methods commonly and con-
cretely implemented across them. Keep in mind that these are uniquely implemented in each class and may
behave differently in each. Table CC5.1 briefly describes some of these common methods shared across the
Collections framework.

Remember that these methods are defined as abstract methods in the Collection<E> interface. It is up to
abstract and concrete classes lower on the “family tree” of the Collections framework to implement these
concretely, and they all do. Some of the subinterfaces that implement Collection<E> add to these methods

Table CC5.1. Partial Listing of Instance Methods of the Collection<E> Interface

Instance method signature Description

boolean .add(E element) Adds the element of type E to the data structure. Some classes return a boolean value
indicating successful addition (true) or not (false).

void .clear() Completely empties the data structure.

boolean .contains(Object obj) Tests whether the data structure contains the object referenced by the method parameter
or not. Returns true or false accordingly.

boolean .containsAll(Collection<?> coll) Tests whether or not the data structure the method is invoked upon contains all of the
elements of the data structure passed in via reference parameter. Returns true or false
accordingly.

boolean .isEmpty() Returns true if the data structure contains no elements. Returns false otherwise.

Iterator<E> .iterator() Returns a reference to an iterator instance object that can traverse (i.e., “walk”) through
the elements of the data structure, providing a convenience to developers.

boolean .remove(Object obj) If present, the object that matches the one whose reference is passed in as a parameter
will be removed from the data structure. A boolean value is returned indicating the
success/failure of this operation.

boolean .removeAll(Collection<?> coll) Removes from the data structure all the objects that match the ones in the parameter
data structure.

boolean .retainAll(Collection<?> coll) Keeps all the objects in the data structure that match the objects in the parameter data
structure and removes all the rest that do not match.

int .size() Returns the size of the data structure.

Object[] .toArray() Creates a “standard” array that contains the elements of the data structure and returns a
reference to the new array.

CC5.1 Classes of the Java Collections Framework • 519

based on their specific nature and functionality. Since ArrayList<E> implements the List<E> interface and
inherits from several abstract classes (not listed in figure CC5.2), it has additional methods beyond those
listed in Collection<E>.*

The usage of some of the methods in table CC5.1 can be explored as follows by testing some code in a
main() method Java application (make sure to import java.util.* first at the top of your code listing!):

Code Snippet CC5.2
ArrayList<Integer> myArrayList = new ArrayList<>();

myArrayList.add(1);
myArrayList.add(2);
myArrayList.add(3);

for (int num: myArrayList)
{
 System.out.print(num + " ");
}
System.out.println();

// Does the ArrayList contain the number 2?
System.out.println("Contains 2? "
 + myArrayList.contains(2));

// Is the ArrayList empty?
System.out.println("Is myArrayList Empty? "
 + myArrayList.isEmpty());

ArrayList<Integer> secondList = new ArrayList<>();
secondList.add(2);
secondList.add(3);

// Does the ArrayList contain all the elements found
// within secondList?
System.out.println("Is secondList contained within myArrayList? "
 + myArrayList.containsAll(secondList));

// Add two numbers at index position 1 in the ArrayList
myArrayList.add(1, 42);
myArrayList.add(1, 56);

// Remove all elements from myArrayList that match the
// ones found in secondList
System.out.println("Remove secondList from myArrayList success?: "
 + myArrayList.removeAll(secondList));

// Print the resulting contents of myArrayList
for (int num: myArrayList)
{
 System.out.print(num + " ");
}
System.out.println();

Running this code will yield the following output:
1 2 3
Contains 2? true
Is myArrayList Empty? false

* https:// docs .oracle .com/ en/ java/ javase/ 18/ docs/ api/ java .base/ java/ util/ ArrayList .html #method -summary.

520 • Companion Chapter 5 / Java Collections Framework

Is secondList contained within myArrayList? true
Remove secondList from myArrayList success?: true
1 56 42

Notice that for many of the methods like .contains() and .removeAll(), you could probably implement
the code for yourself. But luckily the developers of the Java language have done this for you, freeing you up to
work on larger issues. Methods like .removeAll() or .retainAll() can be especially useful in filtering lists
of data like usernames, products, locations, and so on.

The default behavior for an ArrayList<E> is to always add to the end of the list. Objects of the class are
also capable of indexing, meaning you can insert and retrieve elements in the data structure by using index
notation to identify a position in the list, same as with arrays:

Code Snippet CC5.3
myArrayList.add(1, 100);
int value = myArrayList.get(2);

Not all the classes in the Collections framework are
capable of indexing. Keep in mind that ArrayList<E>
does not use index notation as its primary element posi-
tioning behavior; it only provides it as a convenience to
the developer. Figure CC5.3 shows visually what is hap-
pening in myArrayList when we add the number 100
at index position 1.

You can use the ArrayList<E> method .get() with
an index int as a parameter to retrieve an element from a
particular index position in the data structure. Since all
Collections framework classes store complex data- type
objects, .get() returns back a reference to the object at
that index position.

In addition, you can add duplicate values to an
ArrayList<E> without any issue:

Code Snippet CC5.4
myArrayList.add(316);
myArrayList.add(316);
myArrayList.add(316);

// Print the resulting contents of myArrayList
for (int num: myArrayList)
{
 System.out.print(num + " ");
}
System.out.println();

Running this additional code in our application will print the following:
. . . // Prior output from earlier.
1 100 56 42 316 316 316

Other classes in the Collections framework do not allow duplicates. To help with your understanding of
the nature of some of these classes and to help with our discussion in the rest of this chapter, table CC5.2
summarizes some of the major characteristics of the concrete Collections framework classes we will explore:

Using the static methods of the Collections class: Recall earlier that a difference was pointed out between
the Collection<E> interface that serves as the root- level interface for most of the Java Collections frame-
work and the Collections class that contains only static methods. The methods of the Collections class
provide a further convenience to developers who need to perform additional data maintenance actions on

Figure CC5.3.	Visual	Behavior	of	Using	.add() with an
Index Position

CC5.1 Classes of the Java Collections Framework • 521

collections without having to
implement the often complicated
algorithms involved themselves.
Table CC5.3 describes some of
the more commonly used static
methods from the Collections
class.* (Note: Some method signa-
tures have been simplified using
“<…>” for the sake of presentation
in the table. Please see the official
Oracle documentation for the
full signature with complete type
parameter.)

Note that some of the meth-
ods in table CC5.3 will only work
with Collections objects whose classes have implemented List<E>, limiting your usage of these methods
to that “branch” of the Collections family tree (see figure CC5.2).

Using a Java main() class application, you can explore the usage of these as follows. First, add a static method
(see chapter 6) to the main() class application that looks like the following:

* https:// docs .oracle .com/ en/ java/ javase/ 18/ docs/ api/ java .base/ java/ util/ Collections .html.

Table CC5.2. Usage Characteristics of Some Collections Framework Classes

Collections
class

Allows
duplicates?

Uses index
notation? Insertion/removal action

ArrayList<E> Yes Provides but not core Ordered as inserted

LinkedList<E> Yes Provides but not core Ordered as inserted

PriorityQueue<E> Yes No First in, first out (FIFO)

Stack<E> Yes No Last in, first out (LIFO)

HashSet<E> No Provides but not core Ordered by hash code of element

HashMap<K,V> No No Ordered by hash code of key K

TreeSet<E> No No Natural ordering based on value

Table CC5.3. Selected Static Methods of the Collections “Utility” Class

Static method of Collections

Works with classes
that implement _____
and those below it Description

static <…> void sort(List<T> list) List<E> Changes the data structure referenced by parameter by
sorting its elements by natural order.

static <…> int binarySearch(List<…> list,
T key)

List<E> Searches the data structure to find a match for the key,
returning the index position if found. Elements must be
sorted first for method to work effectively.

static void reverse(List<?> list) List<E> Changes the data structure by reversing the ordering of
the elements contained within.

static void shuffle(List<?> list) List<E> Changes the data structure by shuffling its elements into
a random ordering.

static <T> void copy(List<…> destination,
List<…> source)

List<E> Copies the elements found in the source data structure
parameter into the destination data structure parameter,
making changes to the destination collection.

static <T> void fill(List<…> list, T obj) List<E> Replaces all existing elements of the parameter data
structure with copies of the parameter obj.

Static <…> T max(Collection<…> coll) Collection<E> Returns a copy of an element of the data structure with
the highest “value” according to the natural ordering of
those elements.

Static <…> T min(Collection<…> coll) Collection<E> Returns a copy of an element of the data structure with
the lowest “value” according to the natural ordering of
those elements.

static int frequency(Collection<?> coll,
Object obj)

Collection<E> Returns the count of the elements in the parameter data
structure that match the parameter obj.

522 • Companion Chapter 5 / Java Collections Framework

Code Snippet CC5.5
// Author's Print Method – You are free to use it!
public static void printCollection(Collection<?> dataStructure)
{
 for (Object obj: dataStructure)
 {
 System.out.print(obj + " ");
 }
 System.out.println();
}

This printCollection() method will make life easier as you print the results of invocations to the static
methods of the Collections class. Notice that the methods accept a reference to any object whose class has
implemented the Collection interface and is given the wildcard type parameter of “?” to allow any type
(see companion chapter 4). Then a for- each loop is used to traverse (or “walk”) the data structure and print
its contents to the console.
Note: printCollection() will be used several times throughout the rest of the chapter.
Next, we can invoke the methods of the Collection class in the demonstration:

Code Snippet CC5.6
ArrayList<String> nameList = new ArrayList<>();

nameList.add("Billi");
nameList.add("Jorge");
nameList.add("Sarah");
nameList.add("Zari");
nameList.add("Andi");
nameList.add("Yemik");
nameList.add("Andi");

// Print the list first
printCollection(nameList); // Author's print method

// Shuffle the elements
Collections.shuffle(nameList);
printCollection(nameList);

// Reverse this order
Collections.reverse(nameList);
printCollection(nameList);

// Find the "max" word
// (Lexicographically)
System.out.println(Collections.max(nameList));

// Find the "min" word
// (Lexicographically)
System.out.println(Collections.min(nameList));

// Sort the ArrayList
Collections.sort(nameList);
printCollection(nameList);

// Search the ArrayList now that it is sorted
System.out.println(Collections.binarySearch(nameList, "Sarah"));

// Determine the frequency of the appearance of a word
System.out.println(Collections.frequency(nameList, "Andi"));

CC5.1 Classes of the Java Collections Framework • 523

This will produce the following output when run (with notes added by the author):
Billi Jorge Sarah Zari Andi Yemik Andi (Initial List)
Billi Andi Andi Jorge Yemik Zari Sarah (Shuffled)
Sarah Zari Yemik Jorge Andi Andi Billi (Reversed)
Zari (Max word – Z)
Andi (Min word – A)
Andi Andi Billi Jorge Sarah Yemik Zari (Sorted)
4 (Index Position of "Sarah")
2 (Count of "Andi")

Using the LinkedList<E> class: Closely related to the ArrayList<E> class is LinkedList<E>. Whereas
the default behavior of ArrayList<E> is to add elements to the end of the list, a LinkedList<E> data structure
can grow from both ends of the list.* Writing the code to implement a LinkedList<E> data structure is a
common task that students in rigorous computer science programs often undertake, but doing so is beyond
the scope of this text. A linked list data structure works by maintaining references between objects in the col-
lection. Changing reference variables is much more memory efficient than creating new objects and copying
values (as takes place in ArrayList<E> as it resizes). Luckily for us, Java’s developers have implemented a
highly efficient and easy- to- use LinkedList<E> class! You can use some of the more commonly used methods
of the LinkedList<E> class like so:

Code Snippet CC5.7
LinkedList<String> daysOfWeek = new LinkedList<>();

daysOfWeek.add("Wednesday");
daysOfWeek.addFirst("Monday");
daysOfWeek.addLast("Friday");
daysOfWeek.add(1, "Tuesday");
daysOfWeek.add(3, "Thursday");

daysOfWeek.addLast("Saturday");

System.out.println(daysOfWeek.getLast() + "\n");
daysOfWeek.removeLast();

while (!daysOfWeek.isEmpty())
{
 System.out.println(daysOfWeek.getFirst());
 daysOfWeek.removeFirst();
}

Running this code produces the following output:
Saturday

Monday
Tuesday
Wednesday
Thursday
Friday

The LinkedList<E> class also provides some convenient search and search- based removal methods as well:

Code Snippet CC5.8
LinkedList<Integer> numberList = new LinkedList<>();

numberList.add(15);
numberList.add(21);
numberList.add(10);

* https:// docs .oracle .com/ en/ java/ javase/ 18/ docs/ api/ java .base/ java/ util/ LinkedList .html.

524 • Companion Chapter 5 / Java Collections Framework

numberList.add(21);
numberList.add(10);
numberList.add(21);
numberList.add(7);

// Print the initial list
printCollection(numberList);

// Print index of first occurrence of 21
System.out.println(numberList.indexOf(21));

// Print index of last occurrence of 21
System.out.println(numberList.lastIndexOf(21));

// Remove the last occurrence of the duplicated 21
System.out.println(numberList.removeLastOccurrence(21));

// Remove the first occurrence of the duplicated 21
System.out.println(numberList.removeFirstOccurrence(21));

// Print the resulting LinkedList after modifications
printCollection(numberList);

This will result in the following output when executed (with author notes added):
15 21 10 21 10 21 7 (Initial LinkedList)
1 (Index of first 21)
5 (Index of last 21)
true (Successfully removed last 21)
true (Successfully removed first 21)
15 10 21 10 7 (Final state of the LinkedList)

The LinkedList<E> data structure has the efficiency advantage over ArrayList<E> in adding elements to
the front/start of the collection. This efficiency can be seen when working with very large collections of elements
in complex information systems. Adding an element at the beginning of an ArrayList<E> data structure would
incur lots of memory usage and object copying. LinkedList data structures are more efficient due to the use
of reference variables to build the “chain” of elements in the collection. For both data structure types, the use of
their index notation ability is not recommended, as it is less efficient than using the built- in methods like
.addFirst() or .removeFirst(). When printing the contents of these collections, the use of the enhance for
loop (for- each loop) is also recommended, as it will take advantage of each class’s internal implementation of
their data handling. Using a standard for loop and index notation with these will work but grows more inef-
ficient (i.e., slower) with larger sizes of collections.

SUMMARY POINTS

• A collection is a group of data usually
implemented in programming languages in
objects called data structures.

• The Java Collections framework is a family
of	interfaces,	abstract	classes,	and	concrete	
classes that provide Java developers with
convenient functionality for quickly and
effectively integrating collection data structures
into their applications.

• The classes of the Collections framework are
generically	typed	using	type	parameters,	allowing	

flexibility	as	to	the	data	types	collection	objects	
can store and manage.

• Collections classes cannot store primitive data
types but can store objects of the wrapper class
equivalents (Integer,	Double,	Float,	etc.),	which	
are subclasses of the Java class Number.

• The ArrayList<E> class is a commonly used
collections	class,	useful	in	that	it	implements	a	
resizable array. ArrayList<E> replaces the older
Vector<E> class as the preferred resizable array
in Java.

CC5.2 Stacks, Queues, Sets, and Iterators • 525

• List and Queue objects allow duplicate elements
to	be	added	to	their	collections,	whereas	Set	
and	Map	objects	do	not,	since	the	elements	
themselves serve as the “index” position values.

• The Collections class differs from the root- level
interface Collection<E>. The former provides
the developer with many convenient methods

* https:// docs .oracle .com/ en/ java/ javase/ 18/ docs/ api/ java .base/ java/ util/ Vector .html.
† https:// docs .oracle .com/ en/ java/ javase/ 18/ docs/ api/ java .base/ java/ util/ Stack .html.

for working with and manipulating objects of the
Collections framework classes.

• A LinkedList<E>	object	is	highly	efficient	at	
adding and removing items from the front and
back of a collection due to its use of reference
variables as the “links” in the list.

QUICK PROBLEMS

 1. Coding:	Write	a	small	program	that	will	fill	 two	
separate ArrayList<E>	collections,	each	with	one	
hundred randomly generated whole (int) numbers.
Call the appropriate method to delete all numbers
from one ArrayList<E> that are found in the other.
Run	this	program	three	to	four	times,	and	print	the	
resulting size of the altered ArrayList<E>. On aver-
age,	how	many	numbers	are	removed?

 2. Think: Consider how you might implement your
own version of an ArrayList<E> class using a nor-
mal	array.	What	types	of	memory	inefficiencies	may	
occur because of the use of a normal array?

 3. Coding: Create a small ArrayList<E> collection
where each element in the collection is also itself
an ArrayList<E>. Add a few numbers to each of
these,	and	use	a	nested	for- each loop to print the
contents to the console.

CC5.2 Stacks, Queues, Sets, and Iterators
The ArrayList<E> data structure in Java is the “closest” in its nature and behavior
to a standard array, so it makes for a great first stop in your understanding of the
Collections framework classes. As you learned earlier in the chapter, ArrayList<E>
and LinkedList<E> class objects offer a much richer set of functionality and behavior
than a standard array— namely, dynamic resizing and searching/sorting/manipulation
methods that do a lot of the data handling work for you. Moving beyond these into
the Collections framework, data structures like stacks, queues, and sets offer the
same collection of data in one object with processing methods. Additionally, they
overlay natural default behaviors that make them useful in various contexts.

Working with a stack: The Vector<E> class implements the List<E> interface in
the Java Collections framework.* Vector is an older class in the Java API and was,
originally, the “go- to” class when developers needed a dynamically resizable array
(prior to ArrayList<E>). One major benefit is that the Vector<E> class is synchronized, making it useful in
multithreaded, parallel processing situations. Otherwise, the use of ArrayList<E> is recommended by the
Oracle Java documentation when thread safety is not immediately needed.

The Stack<E> class inherits from Vector<E> and adds to its functionality the management of its elements in
a last in, first out (LIFO) manner.† Think of a stack of pancakes (i.e., “hot cakes,” pictured in figure CC5.4). If
you place them on a plate one at a time, one on top of another, you have formed a stack. You cannot take the
first one off the plate without taking the others above it off first. So the last pancake placed on top would
be the first to come off. Drawing from a deck of cards might work the same way in a card game. Other real- life
examples of stacks are a line of automobiles in a driveway, a stack of printer paper inside a printer tray, a stack
of potato crisps in a potato chip can, and so on. In many of these situations, you are (usually) forced to remove
them starting with the one on top. Only rebels pour out the entire contents of the potato chip can!

Figure CC5.4. Stack of
Pancakes

Source: “Mount Pancake” by
smittenkittenorig, https:// www .flickr
.com/ photos/ 83202873 @N00/
4451172538.

526 • Companion Chapter 5 / Java Collections Framework

Since a Stack<E>- based object manages its collection in a LIFO manner, it provides the following methods
for working with data in its collection:

• .push(E object): Push a new value onto the top of the stack.
• .peek(): Return a copy of the topmost item on the stack, but do not remove it.
• .pop(): Return a copy of the topmost item on the stack and remove it.
• .search(Object obj): Search the stack for a match to the parameter object. This method will return

back an int value that is the distance from the top of the stack where the object is located. The topmost
item is at distance 1, the next 2, and so on.

You can see the usage of a Stack<E> object easily. Note that the printCollection() method defined and
implemented earlier in this chapter is used in this and future examples:

Code Snippet CC5.9
Stack<String> cities = new Stack<>();
cities.push("Baltimore");
cities.push("Linden");
cities.push("Martin");
cities.push("Auburn");

System.out.println(cities.peek());
printCollection(cities); // Author's collection print method
System.out.println(cities.search("Auburn"));
System.out.println(cities.search("Linden"));
System.out.println(cities.pop());
System.out.println(cities.pop());
printCollection(cities);

When run, this will produce the following console output (with author’s notes added):
Auburn (.peek() at topmost item)
Baltimore Linden Martin Auburn (print the list using author's method)
1 ("Auburn" is topmost)
3 ("Linden" is in 3rd position)
Auburn (Pop the topmost item off)
Martin (Pop the topmost item off)
Baltimore Linden (Contents of list after edits)

Since the Stack<E> class inherits from Vector<E>, all the methods from
Vector<E> are available for use, like the overloaded .add() method for adding
an element at a particular index position in the stack, .remove() for removing
from a position other than the top, .setSize() to resize the stack and discard
elements if you shrink its size, and so on. Though these are available, its advised
to not use them with a Stack<E> (or if you need them, consider an ArrayList<E>
or other Collections class type), since they detriment the benefits of using a
Stack<E> in the first place!

Working with queues: When you picture a queue (pronounced like the letter
“q”), think of a line of people (or birds, as in figure CC5.5). In fact, in Great Britain
and other European countries, a line of people is normally called a “queue,” or for
the verb form, you would say that people have “queued up.” Whether or not the
Western Hemisphere should adopt this terminology is beyond the scope of this
textbook. For our purposes, the Java collections framework includes the Queue<E>
interface to allow data structures to work like a line of people: the first person in is
usually the first person out, or FIFO (“first in, first out”). Elements in a queue data
structure are added to the end and are removed from the beginning (the “head”).

Queues in Java are generally created using the LinkedList<E> class, as it is
highly efficient at adding and removing elements from both ends of its collection.

Figure CC5.5. A Queue
of	Birds

Source: “The Queue (CC)”
by marfis75 Martin Fisch is
licensed under CC BY 2.0,
https:// www .flickr .com/
photos/ 45409431 @N00/
4289431717.

CC5.2 Stacks, Queues, Sets, and Iterators • 527

LinkedList<E> implements the Deque<E> interface (pronounced “deck”), which is a subinterface of Queue<E>.
In addition to other methods (since LinkedList<E> also implements the List<E> interface), the following
Queue<E> methods are available for manipulating the data in the collection:

• .offer(E element): This will add an element to the head of the queue (“front of the line”). It will return
a true or false based on the success of this addition (false if there are capacity issues).

• .peek(): Returns a copy of the element at the head of the queue but does not remove it. Will return null
if the queue is empty.

• .poll(): Returns a copy of the element at the head of the queue and removes it. Will return null if the
queue is empty.

• .element(): Works the same as .peek() except that it will throw a NoSuchElement exception if the queue
is empty instead of a null value.

• .remove(): Works the same as .poll() except that it will throw a NoSuchElement exception if
the queue is empty instead of a null value.

Like with a stack, a queue data structure is fairly simple to demonstrate in our Java main() application:

Code Snippet CC5.10
Queue<String> bankLine = new LinkedList<>();

bankLine.offer("Mary");
bankLine.offer("Sarah");
bankLine.offer("Aayliah");
bankLine.offer("Arquette");

printCollection(bankLine); // Author's collection print method

System.out.println("Customer: " + bankLine.poll() + " finished transaction.");
System.out.println("Customer: " + bankLine.peek() + " is next.");
System.out.println("Customer: " + bankLine.poll() + " finished transaction.");
System.out.println("Customer: " + bankLine.peek() + " is next.");

printCollection(bankLine); // Author's collection print method

When run, this will produce the following console output (with author’s notes in bold):
Mary Sarah Aayliah Arquette (Initial line)
Customer: Mary finished transaction. (Customer leaves)
Customer: Sarah is next.
Customer: Sarah finished transaction. (Customer leaves)
Customer: Aayliah is next.
Aayliah Arquette (Line after processing)

Stacks, queues, and efficiency in Java: The Oracle documentation for the Stack<E> class and the tutorial
documentation for the Deque<E> interface recommend the use of Deque<E>, which the ArrayDeque<E> class
implements, over the use of a Stack<E>.*,† The documentation mentions that for a regular queue, the
ArrayDeque<E> collection has better efficiency and speed in various tasks over the use of a LinkedList<E>
as well. The LinkedList<E> class is useful though: it has implemented more functionality of the List<E>
interface, and null elements are allowed, whereas they are not allowed in an ArrayDeque<E>.
ArrayDeque<E> collections, like LinkedList<E> objects, are highly efficient at adding and removing ele-

ments at both ends of the list. This makes them efficient when used as either a stack or a queue in Java.
ArrayDeque<E> has methods implemented for both uses:

* https:// docs .oracle .com/ javase/ tutorial/ collections/ implementations/ deque .html.
† https:// docs .oracle .com/ en/ java/ javase/ 18/ docs/ api/ java .base/ java/ util/ ArrayDeque .html.

528 • Companion Chapter 5 / Java Collections Framework

Code Snippet CC5.11
Deque<String> customersWaiting = new ArrayDeque<>();
Deque<Integer> containerIDStack = new ArrayDeque<>();

// Using customersWaiting as a Queue

customersWaiting.offer("Aliyah");
customersWaiting.offer("Markus");
customersWaiting.offer("Salle");

printCollection(customersWaiting);
System.out.println("Now Serving Customer: " + customersWaiting.peek());
System.out.println(customersWaiting.poll());
System.out.println("Now Serving Customer: " + customersWaiting.peek());
System.out.println(customersWaiting.poll() + "\n\n");

// Using containerIDStack as a Stack

containerIDStack.push(45);
containerIDStack.push(65);
containerIDStack.push(12);

printCollection(containerIDStack);
System.out.println("Retrieving Container #: " + containerIDStack.peek());
System.out.println(containerIDStack.pop());
System.out.println("Retrieving Container #: " + containerIDStack.peek());
System.out.println(containerIDStack.pop());

This, when run, will produce the following output:
Aliyah Markus Salle
Now Serving Customer: Aliyah
Aliyah
Now Serving Customer: Markus
Markus

12 65 45
Retrieving Container #: 12
12
Retrieving Container #: 65
65

With such small collection sizes as these, the efficiency gains are invisible, but the use of LinkedList<E>
and ArrayDeque<E> are available if needed as your application scales larger.

Working with a PriorityQueue<E>: A relative of the Queue<E> implementing classes in Java is the
PriorityQueue<E> class. Data structures of this class will perform FIFO actions on the elements in this
collection not based on the order they were inserted but rather based on their natural order. For example,
consider the following code:

Code Snippet CC5.12
PriorityQueue<Integer> orderedQueue = new PriorityQueue<>();

orderedQueue.offer(34);
orderedQueue.offer(15);
orderedQueue.offer(3);
orderedQueue.offer(64);
orderedQueue.offer(6);

while (orderedQueue.size() >= 1)
{
 System.out.println(orderedQueue.poll());
}

CC5.2 Stacks, Queues, Sets, and Iterators • 529

In a normal queue as exampled earlier, the first element to be removed with the invocation of .poll() on
the collection would be the number 34, since it was the first in. But with a PriorityQueue<E> collection,
here the “head” of the line is the integer with the lowest value. Behind that is the next largest integer, and so
on. The console output for this example code would be the following:
3
6
15
34
64

For class objects, as long as the class has implemented the Comparable interface (see companion chapter 4),
then a “natural ordering” can be determined and its objects used with a PriorityQueue<E> collection.

Working with Set<E> collections: The collection classes that implement the Set<E> interface have adopted
behaviors that demonstrate a strict control over the elements placed within their collection objects. Some things
to keep in mind with a Set collection in Java:

• A Set collection cannot contain duplicate values. If you attempt to add a duplicate value into a Set col-
lection, the addition will fail, and usually a false boolean value will be returned from the .add method.

• Set collections do not use index notation at all in their mapping of elements. The value of an element in
a Set in Java serves as its index. Various classes that implement Set<E> will use the value of the element
itself in various ways to order the elements in the collection.

The HashSet<E> class implements the Set<E> interface. Since a set in Java does not use index notation, ele-
ments in the collection for a HashSet<E> are arranged by creating a hash code based on the element’s value,
and elements are ordered by that hash code. From the developer side, we do not have access to the hashed
value of the elements we add, and there is no specific order that a HashSet<E> will impose on our elements.
The HashSet<E> will impose an order that will maximize the speed at which you can test for a duplicate value
in the HashSet<E> and remove elements, among other actions. In many information systems applications,
in- memory sets of data can grow very large, and ordering the values by a hash code system can enable fast
read/write even as the set grows larger. You can explore the usage of a HashSet<E> collection like so:

Code Snippet CC5.13
Set<Integer> hashedSet = new HashSet<>();
hashedSet.add(34);
hashedSet.add(20);
hashedSet.add(134);
hashedSet.add(134);
hashedSet.add(2);

printCollection(hashedSet);

This will produce the following console output:
34 2 20 134

Notice that the code attempts to add the value 134 twice, but the value was only inserted once. In a set,
duplicates are not allowed (due to the fact that the value itself serves as its own index notation). The .add()
method returns false when a duplicate is found. Since the HashSet<E> class also implements the Collection<E>
interface and provides concrete implementation of its methods, you can use a HashSet for more traditional
logical set operations:

Code Snippet CC5.14
HashSet<String> citiesNeedingUpdates = new HashSet<>();
citiesNeedingUpdates.add("Milan");
citiesNeedingUpdates.add("Jackson");
citiesNeedingUpdates.add("Lexington");
citiesNeedingUpdates.add("Trezvant");
citiesNeedingUpdates.add("Murfreesboro");

530 • Companion Chapter 5 / Java Collections Framework

citiesNeedingUpdates.add("Antioch");

Set<String> updatedRoads = new HashSet<>();
updatedRoads.add("Antioch");
updatedRoads.add("Jackson");
updatedRoads.add("Milan");

citiesNeedingUpdates.removeAll(updatedRoads);

printCollection(citiesNeedingUpdates); // Author's Print Method

This will print the following to the console:
Murfreesboro Trezvant Lexington

Traditional operations possible with a Set<E> collection are the following:
• Set difference: Use the .removeAll() method as exampled here.
• Union: Use the .addAll() method (remember the duplicates will be skipped!).
• Intersection: Use the .retainAll() method.

The TreeSet<E> class uses not hashing but the more familiar natural ordering of elements to arrange elements
within the collection. Elements are stored in a treelike fashion (node and two “leaves”) in ascending order, and
like most sets, this class does not allow for duplicates. Consider the following code:

Code Snippet CC5.15
TreeSet<Integer> binaryTree = new TreeSet<>();
binaryTree.add(45);
binaryTree.add(11);
binaryTree.add(3);
binaryTree.add(15);
binaryTree.add(46);
binaryTree.add(90);
binaryTree.add(87);

printCollection(binaryTree); // Author's print method

This will print the following to the console:
3 11 15 45 46 87 90

Starting with the first number, if the next number is less than that value, it will be stored in a left branch,
and numbers larger in the right. Figure CC5.5 shows how our values are associated in a treelike structure after
addition to the TreeSet<E> collection.

Some interesting methods implemented for the TreeSet<E> class to be aware of are the following:
• .first(): Will return a copy of the first element from the TreeSet<E> collection based on natural

ordering.
• .last(): Will return a copy of the last element from the collection based on natural ordering.
• .higher(E element): Will take the element specified in the parameter and return the next highest ele-

ment from the TreeSet<E>. For example, if 34 and 35 are in the list,
and 34 is the parameter, then 35 would be returned, as it is the next
highest element.

• .lower(E element): Will take the element specified in the parameter
and return the next lowest element from the collection.

• .pollFirst(): Will return a copy of and remove the first element in
the collection based on natural ordering.

• .pollLast(): Will return a copy of and remove the last element in the
collection based on natural ordering.

For example, you can remove the largest numbers from our binaryTree
TreeSet<E> collection by calling .pollLast() while the set is not empty:

Figure CC5.6.	Binary	Search	Tree	of	
Values Added to binaryTree Collection

CC5.2 Stacks, Queues, Sets, and Iterators • 531

Code Snippet CC5.16
while (binaryTree.size() > 0)
{
 System.out.println("Removing: " + binaryTree.pollLast());
 printCollection(binaryTree); // Author's print method.
}
System.out.println("TreeSet is empty!");

This prints the following to the console:
Removing: 90
3 11 15 45 46 87
Removing: 87
3 11 15 45 46
Removing: 46
3 11 15 45
Removing: 45
3 11 15
Removing: 15
3 11
Removing: 11
3
Removing: 3
TreeSet is empty!

TreeSet<E> has the advantage over a HashSet<E> in that elements are naturally ordered (for complex data
types, the Comparable interface provides the implementation in these classes for determining “value”). For
speed and efficiency, HashSet<E> is typically faster for addition, removal, and search operations in those sets
that grow very large.

Working with iterators: Each of the classes in the Java Collections framework implements its collection
data operations in its own unique way, creating a unique structure internally that is normally hidden from
the developer. Additionally, each class implements its own set of methods for interacting with the data stored
in the internal collection. For example, we .add() to a LinkedList, .offer() to a queue, and .push() to a
stack. The way to retrieve values from these collections can be just as unique. Luckily for us, the developers of
Java have carried the handy concept of abstraction into the Collections framework with the inclusion of the
Iterable<T> interface. You have heard the term “to iterate” before in our discussion of loops (see chapter 5).
The Iterable<T> interface includes one abstract method, .iterator(). Classes that implement Iterable<T>
do so with the following intentions:

• Providing a common, simple way of traversing (i.e., walking through) all the elements of a collection at
once

• Providing read- only access to the elements
• Providing an algorithmically efficient (i.e., fast!) way of traversing the elements in a collection
• Providing an abstracted interface using methods you are already familiar with

Classes that implement the Iterable<T> interface provide a concrete implementation of .iterator() (and
sometimes more). The .iterator() method creates and returns a reference to an Iterator<E> object, which
performs the walk across a data structure. For example, with our TreeSet<E> collection from earlier, we can
use an iterator to walk through the elements and print them in an efficient way:

Code Snippet CC5.17
TreeSet<Integer> binaryTree = new TreeSet<>();
binaryTree.add(45);
binaryTree.add(11);
binaryTree.add(3);
binaryTree.add(15);
binaryTree.add(46);
binaryTree.add(90);

532 • Companion Chapter 5 / Java Collections Framework

binaryTree.add(87);

Iterator<Integer> treeWalk = binaryTree.iterator();
while (treeWalk.hasNext())
 System.out.print(treeWalk.next() + " ");

System.out.println();

Iterator<Integer> treeBackWalk = binaryTree.descendingIterator();
while (treeBackWalk.hasNext())
 System.out.print(treeBackWalk.next() + " ");

This will print to the console the following:
3 11 15 45 46 87 90
90 87 46 45 15 11 3

Notice that Iterator<E> objects use .hasNext() and .next(), the same methods you are familiar with
from the Scanner class. Additionally, the use of an Iterator<E> object simplifies collection traversal. You do
not have to know how the class implements its internal structure or the methods used to walk through it, as
it abstracts and simplifies all that through the Iterator<E> object it provides. The TreeSet<E> class imple-
ments an additional method, .descendingIterator(), which provides a reverse- walking iterator object to
move through the natural order of the TreeSet<E> elements in reverse. The LinkedList<E> class does some-
thing similar as you can see here:

Code Snippet CC5.18
LinkedList<String> userNames = new LinkedList<>();
userNames.add("markujm");
userNames.add("samulsi");
userNames.add("epirzx");
userNames.add("andermm");
userNames.add("deverbr");

Collections.sort(userNames);

ListIterator<String> usernamesIter = userNames.listIterator(userNames.size());
while (usernamesIter.hasPrevious())
 System.out.print(usernamesIter.previous() + " ");

Console output:
samulsi markujm epirzx deverbr andermm

Using an enhanced for loop (for- each loop) is a similarly fast and efficient way of traversing the elements in
a collection as well. For convenience, the definition for our custom printCollection() method is shown here:

Code Snippet CC5.19
public static void printCollection(Collection<?> dataStructure)
{
 for (Object obj: dataStructure)
 {
 System.out.print(obj + " ");
 }
 System.out.println();
}

Oracle’s documentation recommends the use of either an enhanced for loop or, preferably, an Iterator<E>
to traverse the elements in a collection in an efficient way.

CC5.3 Using the Map Classes of the Collections Framework • 533

SUMMARY POINTS

• A Stack<E> collection inserts items at the end of
the collection and removes them from there as
well,	implementing	a	last	in,	fi	rst	out	(LIFO)	data-	
handling approach.

• A Queue<E> collection inserts items at the end of
the	collection	but	removes	them	from	the	head,	
implementing	a	fi	rst	in,	fi	rst	out	(FIFO)	data-	
handling approach.

• The Oracle Java documentation recommends
using an ArrayDeque<E> in both Stack and
Queue	situations,	as	it	is	effi	cient	at	element	
manipulation at both ends of a collection.

• The PriorityQueue<E> will operate in a LIFO
manner but order elements for removal based
on their natural ordering (via the Comparable<E>
interface).

•	 In	a	set,	the	value	of	the	element	itself	serves	as	
the means by which the collection of elements
is	ordered.	Sets	do	not	use	index	notation,	as	
the element’s value itself serves as the “index
position” of where it belongs in the collection.

• HashSet<E> collections create a hash code of
the element’s value and order the collection via
these hashes. HashSet<E>	is	extremely	effi	cient	
at	adding/searching/removing	operations.

• TreeSet<E> will order elements according to their
natural	order/values.

• Iterators provide a convenient way for developers
to interact with all objects created with the
Collections framework in a standard and
familiar	way,	regardless	of	the	implementation	
and interaction details unique to each class.

QUICK PROBLEMS

 1. Coding: Implement a small program that loops in
a menu system that has four options presented
to	the	user:	“Jump,”	“Dance,”	“Sing,”	“Laugh.”	Loop	
so that the program lets the user choose any one
they	want	during	each	loop,	and	limit	them	to	ten	
choices.	Save	their	choices	in	a	queue,	and	print	
their history out at the end of the program.

 2. Think:	How	can	the	usage	of	Iterable<T> allow for
interoperability across objects instantiated with the
Collections classes?

 3. Coding: Generate ten random integers (whole
numbers),	and	place	fi	ve	of	each	into	two	sepa-
rate stacks (use Stack<E> or ArrayDeque<E>). Write
some logic that will loop through both stacks and
compare the topmost numbers from each. Print the
smallest	of	the	two,	remove	it	from	its	stack,	and	
perform the comparison again with the current top
two numbers from each stack. Repeat until both
stacks are empty.

 CC5.3 Using the Map Classes of the Collections Framework
Th e “second half ” of the Java Collections framework deals with the Map<K,V> interface and the classes that
provide concrete implementations of it and its subinterfaces. Instead of a “list” of single elements, each element
in a map collection stores two pieces of data: a key and
a value that is mapped to that key. An analogy here
would be to imagine a normal array where the index
position is stored as an int alongside the “chunk” of data
in the array at each element. Figure CC5.8 shows an
example of a mapping (sometimes called a dictionary or
associative array in the fi eld of computer science).

In the Java Collections framework, Map<K,V> objects
have the following characteristics:

• Maps in Java cannot contain duplicate values. Map
classes use the key as the “index” position and order
the key- value pairs using the key, preventing
duplicates.

Figure CC5.7. Common Example of a Map Structure
with Multiple Values per Key

Source: “Hash Table Illustration” by Jorge Stolfi is licensed
under CC BY- SA 3.0, https:// commons .wikimedia .org/ wiki/
File: Hash _table _5 _0 _1 _1 _1 _1 _0 _LL .svg.

534 • Companion Chapter 5 / Java Collections Framework

• The classes implementing the Map<K,V> interface in Java
do not implement the Iterable<T> interface.

• The HashMap<K,V> class produces a hash code of the key’s
value (not the mapped value) to organize the map entries,
making this very fast at both adding (and testing for dupli-
cates) and retrieving and removing as your list of entries
grows very large.

• The TreeMap<K,V> class produces a Map collection that is
naturally ordered/sorted by the key. Useful when you need
an ordered key/value collection.

• The LinkedHashMap<K,V> class allows the developer to
preserve the order of insertion into the map while preserv-
ing the speed benefits of both a linked list and hashed keys
for addition/retrieval/removal as the collection grows large.

Table CC5.4 briefly describes some of the more commonly used methods of the Map<K,V> interface and its
implementing classes:

Figure CC5.8. Example Map of Key and Value Pairs

Table CC5.4. Descriptions of Select Methods of the Map<K,V> Interface

Map<K,V> method Description

.put(K key, V value) Places a new entry into the Map collection, with value mapped to key.

.get(Object key) Returns a copy of the value mapped to key.

.remove(Object key) Returns a copy of the value mapped to the key in the Map and removes the key/value
mapping from the collection.

.replace(K key, V value) Replaces the value mapped to key if the mapping exists in the collection.

.containsKey(Object key) Returns a boolean true/false testing if the map contains the parameter key.

.containsValue(Object value) Returns a boolean true/false testing if the map contains the parameter value.

.keySet() Returns a Set<K> object that contains all the keys from the map.

.values() Returns a Collection<V> object that contains all the values from the map.

.entrySet() Returns a Set collection whose elements are data typed to Map.Entry<K,V> objects,
essentially returning a set of the mapping pairs.

.forEach(BiConsumer<? super K,
? super V> action)

Used instead of an Iterable<T> implementation. Accepts as a parameter a reference to an
instance object whose class has implemented the BiConsumer<…> interface.* Often used
with a lambda expression.

* https:// docs .oracle .com/ en/ java/ javase/ 18/ docs/ api/ java .base/ java/ util/ function/ BiConsumer .html

An example usage of the HashMap<K,V> class would be as follows:

Code Snippet CC5.20
Map<String, String> employeeAddresses = new HashMap<>();

employeeAddresses.put("Market Street", "Jamie K.");
employeeAddresses.put("Andover Lane", "Margie L.");
employeeAddresses.put("Terrapin St.", "Jerry G.");

// 1. Traversing the Map using the KeySet and .get()
for (String add : employeeAddresses.keySet())
{

CC5.3 Using the Map Classes of the Collections Framework • 535

 System.out.println(
 "Employee: " + employeeAddresses.get(add)
 + ", Address: " + add);
}

// 2. Traversing the Map using the EntrySet and key/value in each.
for (Map.Entry<String, String> entry : employeeAddresses.entrySet())
{
 System.out.println(
 "Employee: " + entry.getValue()
 + ", Address: " + entry.getKey());
}

// 3. Traversing the Map using a lambda expression
employeeAddresses
 .forEach((address, name) - > System.out.println(
 "Employee: " + name
 + ", Address: " + address));

Notice that included in this example are three separate ways to traverse the HashMap<K,V> and print out
its values:
 1. By invoking the .keySet() method to retrieve a Set<K> of keys, then calling .get() to extract the

value mapped to each key.
 2. By invoking the .entrySet() method to extract a Set with Map.Entry<K,V> data- type objects,

then calling the .getKey() and .getValue() on each Map.Entry<K,V> object.
 3. By using a lambda expression in the .forEach() method parameter. Recall from chapter 11 that

lambda expressions can be used to simplify syntax. To understand this usage of .forEach(), keep
the following in mind:

 a. The .forEach() method accepts as a parameter a reference to a class that implements the
BiConsumer<? super K, ? super V> interface. This interface defines the abstract method
.accept(T t, U u).

 b. The lambda expression creates an anonymous inner class, has it implement the BiConsumer<…>
method .accept(), and passes an object of this anonymous inner class to the .forEach()
method— all behind the scenes!

 c. The lambda expression allows us to create custom names for the “input” parameters that come
from the Map entries, which here are address and name. The code after the - > represents the
code that would have been written for the .accept() method from the BiConsumer<…> interface.

The output from all three versions of the traversal of this HashMap<K,V> looks the same:
Employee: Margie L., Address: Andover Lane
Employee: Jamie K., Address: Market Street
Employee: Jerry G., Address: Terrapin St.

Note as well that the order the entries are printed is not the same as inserted. Recall that a hash code is
generated for the key internally in the Map<K,V> structure (similar to the behavior of HashSet<E>) as it man-
ages its own internal order. So print and retrieval order may not match insertion for a HashMap<K,V>.

Business system example using HashMap<K,V>: A common usage and example of a HashMap<K,V>
would be to perform a count of an unknown (ahead of time) set of key values. For example, in an information
system with many users, you cannot predict the order or the frequency that logins will occur by those users.
A HashMap<K,V> is handy in that if a new key (here a username) is encountered and is not already mapped,
it will be added. Consider the following example:

536 • Companion Chapter 5 / Java Collections Framework

Code Snippet CC5.21
// History of user logins today
String[] users = {"A","C","A","D","E","F","D","C","C","F","M","A"};
HashMap<String, Integer> loginCount = new HashMap<>();
int tempCount = 0;

for (String c : users)
{
 if (!loginCount.containsKey(c))
 loginCount.put(c, 1);
 else
 {
 tempCount = loginCount.get(c);
 tempCount++;
 loginCount.replace(c, tempCount);
 }
}

loginCount.forEach((user, count) - > System.out.println(
 "Employee: " + user + ", Login Count: " + count));

User logins are mimicked here by using an array of String values that represent usernames. Notice that this
code first checks to see if the next login has been counted previously. If not, it is added to the Map<K,V> with
the username as a key and the count, 1, as the value mapped to the key. If the login has occurred previ-
ously, then the prior count is retrieved, incremented, and replaced in the mapping. The output from this code
execution would be the following:
Employee: A, Login Count: 3
Employee: C, Login Count: 3
Employee: D, Login Count: 2
Employee: E, Login Count: 1
Employee: F, Login Count: 2
Employee: M, Login Count: 1

This is a great example of how useful Map<K,V> structures can be. The collection itself handles the searching,
matching, and mapping without the need for a complicated switch statement. Since you cannot guess ahead
of time which users might log in, a hard- coded switch would not work well.

SUMMARY POINTS

• A map data structure in a program stores pairs
of keys and values. Each value is mapped to one
key,	and	duplicates	are	not	allowed.

• The HashMap<K,V>	class	orders	the	key/value	
pairs by producing a hash code of the key.
HashMap<K,V>	is	highly	efficient	at	add/search/
remove operations.

• The TreeMap<K,V>	class	arranges	key/value	pairs	
by the natural ordering of the keys.

• The LinkedHashMap<K,V> uses a hash code of the
key	in	a	key/value	pair	to	locate	mappings	in	the	
collection but will also preserve the insertion
order	of	key/value	pairs.

• Classes implementing the Map<K,V> interface
implement the .forEach()	method,	which	can	be	
used with a lambda expression to quickly traverse
the map. A regular enhanced for loop can also be
used	to	efficiently	traverse	a	map	collection.

QUICK PROBLEMS

 1. Coding:	Add	five	student	names	and	their	year	in	
college	(freshman,	sophomore,	junior,	senior)	to	a	
TreeMap<K,V> collection. Think about which should

be	the	key	and	which	the	value.	Afterward,	print	out	
from the map only those students who are “junior”
in	year	classification.

CC5.4 Additional Business Applications of Some Java Collections Framework Classes • 537

 2. Think: When might preserving a custom ordering via
insertion using a LinkedHashMap<K,V> be preferable
to allowing the map collection to order the elements
itself (as in TreeMap<K,V> or HashMap<K,V>)?

 3. Coding: Create a HashMap<K,V> to store telephone
prefixes	and	the	cities	that	fall	under	each.	For	the	
value,	use	an	ArrayList<String>. Add three pre-
fixes	and	two	to	four	cities	to	each.

 CC5.4 Additional Business Applications of Some Java Collections Framework Classes
In this section, brief examples are given where several of the major classes of the Java Collections framework
can be used in business application scenarios. Code examples are provided for most. Provided code examples can
be implemented within the main() method of a Java class.
ArrayList<E>: The ArrayList<E> class provides a flexible, dynamically resizable array along with several

powerful data manipulation methods. Whenever a list of data needs to be stored and you are unsure of how
many elements will be used, an ArrayList<E> is a good choice. For example, a simple shopping cart can be
implemented where a user could buy any number of items from a grocery store:

Full Program CC5.1.A
import java.util.*;

public class CollectionsExamples {
 public static void main(String[] args) {
 Scanner keyboardIn = new Scanner(System.in);
 ArrayList<String> shoppingCart = new ArrayList<>();
 String item = "";
 while (true)
 {
 System.out.print("Enter Grocery Item: ");
 item = keyboardIn.nextLine();
 if (!item.equalsIgnoreCase("done"))
 shoppingCart.add(item);
 else
 break;
 }

 Collections.sort(shoppingCart);

 System.out.println("\nShopping Cart Contents:");
 for (var purchasedItem : shoppingCart)
 System.out.println(purchasedItem);

 } // End of main()
} // End of CollectionsExamples class

Running this code would yield the following output:
Enter Grocery Item: Eggs
Enter Grocery Item: Cheese
Enter Grocery Item: Celery
Enter Grocery Item: Salad Mix
Enter Grocery Item: Arugula
Enter Grocery Item: Kale
Enter Grocery Item: done

Shopping Cart Contents:
Arugula
Celery
Cheese
Eggs
Kale
Salad Mix

538 • Companion Chapter 5 / Java Collections Framework

LinkedList<E>: The Collections class LinkedList<E> works in a similar way to ArrayList<E>, but the
name of the game here is speed. A LinkedList<E> is much faster with the insertion and deletion of items ad
hoc (i.e., anywhere) in the list when the amount of data in the list is very large.

Full Program CC5.1.B
import java.util.*;

public class CollectionsExamples {
 public static void main(String[] args) {

 LinkedList<String> itemList = new LinkedList<>();
 String[] items = {"Corn","Eggs","Fajita Mix","Kale","Mangos"};

 for (var item: items)
 {
 itemList.add(item);
 }

 itemList.add(3,"Fruit Mix"); // insert at index 3
 itemList.addFirst("Apples"); // insert at start

 for (var item: itemList)
 {
 System.out.println(item);
 }
 } // End of main()
} // End of CollectionsExamples class

The output when running this example would look like the following (with inserted grocery items in bold):
Apples
Corn
Eggs
Fajita Mix
Fruit Mix
Kale
Mangos

The usage of LinkedList<E> allows an insertion at the start, end, or anywhere in the list of data to occur in a
highly efficient and speedy manner, with little regard to how much data is in the list. With an ArrayList<E>, an
array is dynamically being resized (re- created and items copied behind the scenes). With a LinkedList<E>, each
element is a stand- alone element, and reference variables between the elements are rearranged with insertions/
deletions.
Stack<E>: A Stack<E> can be useful when a business needs to process the most recent data or events first

and then move on to older data. For example, often a company will employ a last in, first out (LIFO) account-
ing method to process more recently created inventory as having been sold “first,” since recent products often
yield more revenue due to currency inflation. Consider the following code:

Full Program CC5.1.C
import java.util.*;

public class CollectionsExamples {
 public static void main(String[] args) {

 Stack<Product> productRevenue = new Stack<>();

 productRevenue.add(new Product(2020,5.60));
 productRevenue.add(new Product(2021,5.90));
 productRevenue.add(new Product(2022,6.10));

CC5.4 Additional Business Applications of Some Java Collections Framework Classes • 539

 productRevenue.add(new Product(2023,8.60));

 while (!productRevenue.empty())
 {
 System.out.println(productRevenue.pop());
 }

 } // End of main()
} // End of CollectionsExamples class

// inner class
class Product{
 int year;
 double cost;

 public Product(int year, double cost)
 {
 this.year = year;
 this.cost = cost;
 }

 public String toString()
 {
 return this.year + " " + this.cost;
 }
}

When this code is run, the following output is produced:
2023 8.6
2022 6.1
2021 5.9
2020 5.6

Whenever you need the most recently added item to be processed first without having to keep track of
insertion sequence, a Stack<E> is the way to go.
TreeSet<E>: The TreeSet<E> class provides a way to insert items into a Set where items are automatically

inserted in a sorted, ordered manner. This can save the programmer the time needed to write code that would
manage the sorting of items themselves. Consider the shopping list example from earlier, this time modified
to use a TreeSet<E>:

Full Program CC5.1.D
import java.util.*;

public class CollectionsExamples {
 public static void main(String[] args) {

 Scanner keyboardIn = new Scanner(System.in);
 TreeSet<String> shoppingCart = new TreeSet<>();
 String item = "";
 while (true)
 {
 System.out.print("Enter Grocery Item: ");
 item = keyboardIn.nextLine();
 if (!item.equalsIgnoreCase("done"))
 shoppingCart.add(item);
 else
 break;
 }

540 • Companion Chapter 5 / Java Collections Framework

 System.out.println("\nShopping Cart Contents:");
 for (var purchasedItem : shoppingCart)
 System.out.println(purchasedItem);

 } // End of main()
} // End of CollectionsExamples class

This will produce the following output when run:
Enter Grocery Item: Zucchini
Enter Grocery Item: Grapes
Enter Grocery Item: Oranges
Enter Grocery Item: Cheese
Enter Grocery Item: Arugula
Enter Grocery Item: Cocoa Powder
Enter Grocery Item: done

Shopping Cart Contents:
Arugula
Cheese
Cocoa Powder
Grapes
Oranges
Zucchini

HashSet<E>: The HashSet<E> collection will create a hash code of the value of the item to be added, which
allows for very rapid searching, addition, and removal operations even if the set grows very large in quantity.
Speed is the biggest benefit of using this class. It will order only its internal hash codes, but it will not sort the
items inserted. For example, the following is a modification of the shopping cart example:

Full Program CC5.1.E
import java.util.*;

public class CollectionsExamples {
 public static void main(String[] args) {

 Scanner keyboardIn = new Scanner(System.in);
 HashSet<String> shoppingCart = new HashSet<>();
 String item = "";
 while (true)
 {
 System.out.print("Enter Grocery Item: ");
 item = keyboardIn.nextLine();
 if (!item.equalsIgnoreCase("done"))
 shoppingCart.add(item);
 else
 break;
 }

 System.out.print("\nEnter Item To Search Cart: ");
 item = keyboardIn.nextLine();

 // Search for item in shopping cart
 System.out.println("\n" + item
 + " already added?: "
 + shoppingCart.contains(item));

 } // End of main()
} // End of CollectionsExamples class

CC5.4 Additional Business Applications of Some Java Collections Framework Classes • 541

Running this code produces the following (when searching for “Rice” in the shopping cart):
Enter Grocery Item: Arugula
Enter Grocery Item: Cheese
Enter Grocery Item: Cocoa Powder
Enter Grocery Item: Grapes
Enter Grocery Item: Oranges
Enter Grocery Item: Zucchini
Enter Grocery Item: done

Enter Item To Search Cart: Rice

Rice already added?: false

Looks like the user forgot to purchase something! A check like this can be used in several ways in a busi-
ness scenario: searching for an already existing email address in a roster of thousands of employees, checking
to see if an inventory item already exists by a name, inserting either a new employee email address or a new
item name into a very large in- memory set of them, and so on.

Summary
In	this	chapter,	you	have	explored	the	nature,	basics,	
and effective usage of the classes of the Java
Collections framework. Data structures such as
resizable	arrays,	 linked	lists,	stacks,	queues,	sets,	
and	maps	are	the	gold	standard,	go-	to	collection	
structures	and	approaches	for	highly	efficient	 in-	
memory data storage and manipulation. Individuals
studying in computer science programs will often
learn how to write the code to implement these data
structures,	applying	theory	and	relevance	both	from	
the	computer	science	field.	While	a	highly	valuable	
effort (one your author encourages you to research

further	 if	you	are	interested!),	for	 information	sys-
tems	 developers,	 only	 the	 understanding	 of	 how	
these data structures work and their usage as imple-
mented in the Java language is needed. Usage of
these classes has innumerable applications in the
business	and	information	systems	areas,	helping	
solve many problems where sophisticated handling
of	data	is	needed.	Often	a	neglected	area	of	study,	
the Java Collections framework and knowledge of
how to leverage it successfully are great tools for an
information systems professional to put into their
development arsenal!

Practice Problems
Terminology
Match	the	following	terms	from	the	chapter	with	their	most	appropriate	definition:

 1. Collection a. An alphanumeric (numbers and letters) representation of a value. Used in encryption, hashing, and
other cryptographic applications.

 2. Data structure b. A Java class that implements a data structure that is highly efficient at adding and removing
elements from both ends of a collection in memory.

 3. Interface c. A Java class whose objects are generated by classes that implement the Iterable<T> interface
and used to provide a common approach to the interaction of all Collections framework
objects.

 4. Abstract class d. A Java class that implements a set- based data structure where cryptographic values for single
elements are generated and used to order the elements in the collection.

 5. Collection<E> e. A Java interface that classes in the Collections framework implement in order to create
collections of single elements that prevent duplication of values in the collection.

542 • Companion Chapter 5 / Java Collections Framework

 6. Collections f. A Java class that implements a data structure that strictly controls the removal behavior of
elements by following a LIFO approach.

 7. ArrayList<E> g. A Java class that orders key/value pairs in a data structure and preserves the insertion order of the
pairs.

 8. .removeAll(…) h. A collection of single elements whose values and natural ordering determine their organization and
removal behavior.

 9. .retainAll(…) i. A Java interface that classes in the Collections framework implement in order to create data
structures that store elements as key and value mapping pairs.

 10. LIFO j. Java class that has some implemented methods but some that are not, allowing future subclasses
to inherit and implement them fully and in a manner custom and beneficial to them.

 11. FIFO k. A Java class that orders key/value pairs in a data structure based on the natural value ordering of
the pair’s key.

 12. Hash code l. A Java class that implements a data structure that strictly controls the removal behavior of
elements by following a FIFO approach.

 13. LinkedList<E> m. A Java class that implements a queue data structure where the natural ordering by value of the
single elements in the collection determines their removal behavior.

 14. Stack<E> n. A Java class popularly used to create a resizable array. Replaces the older Vector<E> class in
use.

 15. Queue<E> o. Approach to element removal in a collection where the most recently added element will be the first
to be removed.

 16. Set<E> p. Method defined in the Collection<E> interface and implemented in Collections framework
classes that removes all elements in one collection that are also found in the parameter
collection.

 17. ArrayDeque<E> q. A sequence of similar- in- nature data gathered together in one object or structure.

 18. TreeSet<E> r. A Java class that orders key/value pairs in a data structure based on a cryptographic representation
of the pair’s key.

 19. PriorityQueue<E> s. A Java class that implements a data structure that is highly efficient for use in both stack and
queue scenarios, as recommended by the Java documentation.

 20. HashSet<E> t. Approach to element removal in a collection where the earliest element added to the collection will
be first to be removed.

 21. Iterator<E> u. Java interface that serves as the root class for all classes in the Java Collections framework.

 22. Map<K,V> v. Method defined in the Collection<E> interface and implemented in Collections framework
classes that retains all elements in one collection that are also found in the parameter collection,
discarding the rest.

 23. HashMap<K,V> w. In a programming context, an object that maintains data in a sophisticated manner internally and
includes functionality for the manipulation of that data.

 24. TreeMap<K,V> x. A Java “utility” class that provides many static methods developers can find useful when working
with data structures created using the Java Collections framework classes.

 25. LinkedHashMap<K,V> y. A Java class with no implemented methods and only constant data fields. Useful to allow future
classes to provide concrete code implementations of their methods. Enables nonrelated classes to
share commonalities.

CC5.4 Additional Business Applications of Some Java Collections Framework Classes • 543

Find the Error
In	each	of	the	following	problems,	carefully	examine	
the	code	given,	and	determine	the	error(s)/issue(s)	

with	each.	Keep	in	mind,	the	error(s)	could	be	syntax	
(code) or logic (intended outcome) based or both!

 1.

// Assume all needed imports have been made
Scanner in = new Scanner(keyboardIn);
Stack<E> myStack = new Stack(<>);
while (myStack.hasNext())
{
 System.out.println(Enter a name:");"
 myStack.add(in.nextLine());
}

 2.

TreeSet<int> orderNums = new Set<E>();
orderNums.offer(10);
orderNums.offer(20);
orderNums.offer(30);
orderNums.offer(10);
orderNums.offer(15);
orderNums.offer(25);

 3.

LinkedList<Integer> linkL = new LinkedList<>();
for (int i=0; i<10; i++)
{
 linkL.add((int)(1 + Math.random()) * 11);
}
System.out.println(Collections.binarySearch(linkL, 4));

 4.

// Logic to represent automobiles in a one- exit driveway
Queue<String> driveWay = new ArrayDeque<>();
driveWay.push("CarMake, Red, 23434");
driveWay.push("AutoBuilder, Green, 33321");
driveWay.push("SpeedGo, Polkadot, 33400");
driveWay.push("CarMake, Yellow, 99431");
// . . .
// automobiles leaving the driveway
driveWay.poll();
driveWay.poll();
driveWay.poll();
driveWay.poll();

 5.

Map<Double, String> studentGPA = new HashMap<>();
studentGPA.put(3.4, "Suzie");
studentGPA.put(3.1, "Ayylah");
studentGPA.put(2.9, "Billi");
studentGPA.put(3.4, "Anna");
studentGPA.put(3.1, "Arlough");

 6.

String name = "bookAuthor";
HashSet<Character> letterSet = new HashSet<>();

// Store name in collection

544 • Companion Chapter 5 / Java Collections Framework

for (Character c: name.toCharArray())
{
 letterSet.add(c);
}

// Print letters out to print the name
// "bookAuthor"
for (Character c: letterSet)
{
 System.out.print(c + " ");
}

 7.

// Stack duplication

Stack<Integer> firstStack = new Stack<>();
Stack<Integer> secondStack = new Stack<>();
for (int i = 0; i < 10; i++)
 firstStack.push(i);

// Copy firstStack into secondStack
for (int i = 0; i< firstStack.size(); i++)
 secondStack.push(firstStack.pop());

 8.

Queue<String> nameQueue = new ArrayDeque<>();
nameQueue.offer("Billi");
nameQueue.offer("Sarah");
nameQueue.offer("Caylee");
nameQueue.offer("Linwood");

Iterator<Queue<String>> qIter = new Iterator(Queue.Iterator);
while (qIter.next())
 System.out.println("Name: " + qIter.hasNext());

 9.

Set<String> studentGPA = new HashSet<>();
studentGPA.put(3.4, "Suzie");
studentGPA.put(3.1, "Ayylah");
studentGPA.put(2.9, "Billi");
studentGPA.put(3.4, "Anna");
studentGPA.put(3.1, "Arlough");

 10.

for (int i=0; i<10; i++)
{
 Map<String, Integer> numList = new Map<>();
 numList.put(" ", i);
}

Think about It
 1. Why do you think the developers of the Java lan-

guage decided to group the collections classes
examined in this chapter together under a single
framework?

 2. In plain language and in the context of program-
ming,	what	is	a	collection?	What	is	a	data	structure?

	 3.	 How	 does	 the	 object-	oriented	 concept	 of	 an	
interface help improve the usability of the Java
Collections framework?

 4. What is the general overall structure of the
Java Collections framework? What interfaces are
present? What classes?

CC5.4 Additional Business Applications of Some Java Collections Framework Classes • 545

 5. When is it to the advantage of the developer to use
an ArrayList<E> object? When might a standard
Java array be more useful than an ArrayList<E>?

 6. What are some of the static methods of the
Collections class? Do they work on objects
instantiated from all classes in the Java
Collections framework?

 7. What are some static methods of the Collections
class	that	if	you,	the	developer,	tried	to	implement	
them manually would take quite an effort?

 8. Which classes in the Java Collections framework
are	capable	of	index	notation?	Which	are	not,	and	
for	those,	how	do	they	“map”	the	elements	in	their	
collections?

 9. Which classes in the Java Collections framework
allow duplicate elements to be inserted? Which do
not?	For	those	that	do	not,	why	do	they	prevent	this	
from happening?

	 10.	 What	are	several	benefits	of	using	a	LinkedList<E>
data structure? What interface in the Java
Collections framework does it implement?

	 11.	 How	does	a	Stack<E> manage its elements differ-
ently	than,	say,	the	ArrayList<E> or LinkedList<E>
classes?

 12. What is meant by the data- handling acronym
“LIFO”? What is meant by “FIFO”?

 13. What are some real- world uses of a Stack<E>?
	 14.	 How	does	a	Queue<E> data structure manage its

elements differently than a Stack<E>?
 15. What are some real- world uses of a Queue<E>?

	 16.	 What	benefits	mentioned	by	the	official	Java	docu-
mentation are gained by using an ArrayDeque<E>
object in situations where both a stack and a queue
are needed?

	 17.	 How	is	a	PriorityQueue<E> similar to a “regular”
queue	data	structure?	How	does	it	behave	differ-
ently?	How	can	this	different	behavior	be	useful	in	
real- world applications?

	 18.	 How	does	the	data	handling	performed	by	a	Set<E>
prevent it from accepting duplicate values?

	 19.	 What	 is	 a	 major	 characteristic/benefit	 of	
the HashSet<E>?

	 20.	 What	 is	 a	 major	 characteristic/benefit	 of	 the	
TreeSet<E>?

 21. What interface must a class implement in order for
its objects to work naturally with the behavior of a
TreeSet<E> collection?

	 22.	 What	 are	 the	 benefits	 of	 using	 an	Iterator<E>
object with the classes of the Java Collections
framework?

	 23.	 How	is	an	Iterator<E> object created for any par-
ticular collection class object?

	 24.	 How	do	the	classes	that	implement	the	Map<K,V>
interface differ from other classes in the Java
Collections framework?

	 25.	 How	does	a	LinkedHashMap<K,V>’s behavior differ
from that of the HashMap<K,V>?

	 26.	 How	does	TreeMap<K,V> differ from HashMap<K,V>?
 27. If you needed to store multiple values with a par-

ticular key in a Map<K,V>	structure,	how	could	you	
accomplish this?

Short Syntax Problems
 1. Write a small program that will prompt the user to

enter a word. The program will capture the word
and store its characters in a Stack<E> object. Write
the logic that will check to see if the word entered is
a	palindrome	(i.e.,	a	word	that	is	spelled	the	same	
forward	and	backward—	e.g.,	“racecar,”	“madam,”	
“level,”	etc.).	Hint: Create as many other Stack<E>
objects as you might need to accomplish this.

 2. Write a small program that performs the same task
and logic as in short syntax problem #1 but uses a
LinkedList<E> to accomplish the task.

 3. Write a small program that will prompt to the con-
sole	for	a	large	block	of	text.	(You	can	copy/paste	
a	large	paragraph	from	the	web,	etc.	Be	careful	not	
to include special characters!) The program will
capture the large block and then proceed to count

the occurrences of words in the block. Store the
counts in a Map<K,V> object.

 4. Write a small program that will prompt the user to
enter the names of family members and their ages.
Allow the program the loop until an age of - 1 is
entered,	which	will	end	the	loop.	Store	the	ages	and	
family member names in a TreeMap<K,V>. Print the
names and ages out along with a category label.
For	example,	 if	the	family	member	is	eight	years	
old,	print	“< 10 Years Old” and print additional
family members until an age of less than twenty
is	encountered,	then	print	“< 20 Years Old,”	and	
so on for each grouping of family members’ ages.

 5. Write a method that will accept as an input param-
eter a Stack<E> and return back a reference to a
new Stack<E> object that contains the elements
from the parameter stack but in reverse.

546 • Companion Chapter 5 / Java Collections Framework

Full Problems
 1. Write a program that is similar to short syntax prob-

lem	#3,	but	alter	it	in	the	following	ways:
 a. The program will count the occurrence of letters

and	characters	(punctuation,	etc.)	in	the	block	
of text.

 b. Store the counts in a HashMap<K,V>.
	 c.	 When	the	block	of	text	has	been	processed,	

print to the console a visual representation of
a	histogram.	Print	the	character	counted,	and	
print a number of asterisks equal to the count
to	the	right	of	the	letter.	For	example,

e: ***************
a: ************
o: ******
. . .

 d. Print the histogram in order of the most fre-
quently	occurring	letter	first,	second	next,	and	
so on.

 2. Create a student management system for a small
university that will use an appropriate Map<K,V>
data structure as its core data- storing object along
with any other needed Collections framework
data structures. The application will function as
follows:

 a. A menu system will be presented to the user
giving them the option to “Create a Course” and
“Add Students to a Course.”

	 b.	 When	creating	a	course,	the	user	will	be	asked	
for a code for the course and the course
name.	For	example,	“19929”	might	be	a	code,	
and “Introduction to Systems Analysis” might
be the name.

	 c.	 When	adding	a	student	to	a	course,	the	applica-
tion should allow the user to choose a course to
add	 students	 to.	 Once	 a	 course	 is	 chosen,	
the	user	can	type	in	first/last	names	for	the	
students to add to the course. The user will
type	 the	 word	 “done”	 when	 finished	 adding	
students.

 d. The same student can be added to multiple
courses as the user populates the courses.

 e. The user can choose a menu option to print a
report showing by course and all students in
each course.

 f. The user can choose a menu option to print a
report showing by students and all the courses
each student is currently “enrolled” in.

	cc5

