
Copyright © 2024 Prospect Press. All rights reserved. For use with Fundamentals of Java Programming for
Information Systems by Jeremy D. Ezell

C o m p a n i o n C h a p t e r 6

Multithreading and Parallel Programming

What You Will Learn in This Chapter
The ability of modern software to take advantage
of multiple CPUs and multicore CPU architectures
present in personal computers, digital devices, and
commercial computing hardware has advanced many
areas of computing by leaps and bounds. Sophistica-
tion of operating systems, efficiency of graphical and
video manipulation software, data analytics applica-
tions, and artificial intelligence software (such as
language- learning models) have all benefited from the
use of multithreaded applications. Developers who
are skilled in parallel programming and techniques
of concurrency are consistently in high demand. For
information systems professionals, the complexity of
contemporary systems often calls for a multithreaded
programming approach. Modern systems commu-
nicate over networks, interact with various devices,
perform file I/O and database read/write operations,
print, and perform analytical operations, often all at
the same time and across numerous users. For infor-
mation systems professionals, an understanding of
contemporary ideas and approaches to concurrency
in Java applications is a must.

Specifically, this chapter will help you do the
following:

 1. Understand the need and practical uses for multi-
threaded applications in modern contexts

 2. Understand how the core Java language has
supported multithreaded programming since
the beginning and learn how to use the Thread
and Runnable classes

 3. Understand the concept of synchronization and
how to manage threads’ access to a shared appli-
cation resource, including the usage of atomic data
types and the Lock class

 4. Become aware of some of the major classes and
parts of the Java concurrency API and how they
are used

 5. Understand how to use the ExecutorService class
to help manage threads in an easier and more auto-
mated manner

 6. Understand how to perform computations and
retrieve results from executing threads and use
those in your application

Opening Scenario
“We have to be able to demonstrate to the client that
this system will be able to handle everything thrown
at it, from multiple users, all at the same time!” Several
members of your project team for the mom-and-pop
grocery store system nod in approval in response to
the project manager’s comments. Her concerns are
valid, and the system will eventually have to do a lot:
point- of- sale employees can log in and ring orders,
shoppers can browse grocery inventories online and
place orders, and shipping and receiving employees
can check in inventory and prepare stock for the floor
areas. These are just some of the scaled and complex

activities that the system will have to manage. The
project manager continues, “We need to design this
from the ground up for concurrency; it will need to be
able to do several things at once without screens
freezing up and the data going haywire.” Obviously,
she had been down this road before.

During discussions with some of your fellow team
members after the planning meeting, it is decided
that an initial, small demonstration of parallel pro-
gramming as a proof of concept is warranted.
Though the client has not expressed this, the team
is sure they have concerns about whether or not

548 • Companion Chapter 6 / Multithreading and Parallel Programming

a	modern,	fully	capable	system	can	be	developed.	
Among other features being proofed for demo to
the	client,	you	and	your	colleagues	plan	out	a	small	
demonstration where online shoppers will be simu-
lated as they shop for and purchase grocery items
at the same time.

“You’ll have to research what features of Java will
allow	us	to	use	multiple	CPU	cores	at	the	same	time,”	
your PM responds as she looks over the plans. “It
is	difficult	in	other	languages;	let’s	hope	it’s	not	too	

bad in Java.” This does not give you a great feeling.
Determined	to	get	it	working,	you	dive	into	the	docu-
mentation and several other resources. The Java lan-
guage has made relatively complicated tasks fairly
easy	in	many	other	areas	that	you	have	explored,	and	
you	have	confidence	that	it	has	not	overcomplicated	
parallel	programming.	One	more	time,	you	push	other	
tasks to the side and focus on concurrency in the
Java	language,	determined	to	score	an	additional	
win	for	your	team . . .

 CC6.1 Concurrency in Java Using Thread and Runnable Classes
The vast majority of the software that runs today’s information systems has been built with and takes advantage
of an approach called multithreaded programming. Computing systems with multiple processors and, more
recently, with multicore CPUs are nothing new. To many programmers, though, architecting their software to
take advantage of a system with multiple processing cores is still relatively new. As CPUs hit processing upper
limits due to their characteristics—such as heat, the number of transistors per chip wafers, and the size of their
internal components and signal pathways—placing multiple cores in a CPU and writing software to take
advantage of this are a must. A large majority of the gains in modern computing speed and efficiency comes
from leveraging multicore programming techniques.

As most seasoned systems developers who have worked in multicore
development projects will tell you, effective multithreaded programming
is just plain difficult in most languages. It is not an easy topic. Luckily, the
developers of the Java language have provided several classes and an API
that will help programmers easily leverage most multicore platforms (both
consumer and enterprise). Programmers will most often need parallel pro-
gramming built into their Java program in many cases, including (but not
limited to) the following:

• When performing complex calculations, where the task can be divided
up and recombined afterward for a solution

• When communication over a network is needed, where the Java program
should continue to execute and respond to user interaction while waiting
for a possibly delayed interaction to occur over a network connection

• When their Java program is performing a file read/write, where task
completion could be delayed by external factors

• When their Java application is interacting with peripheral hardware
connected to a computing system, where data may not be received or
processed until interaction with the peripheral is complete (a common example of this is completion of a
print job)

It will be helpful to clarify some terms before diving into Java’s multithreading classes:
• Thread: This is the smallest unit of work that can be processed by a CPU. Usually a task involving a

calculation or a move of data from one location to another. In the days of a single CPU, the computer’s
operating system (OS) would manage the threads, moving one to the CPU for processing and determining
which others would come next in as fair and equitable manner as possible.

• Process: A shared execution environment where several related threads are managed. Most Java programs
execute in a process: one thread for the main() application, a thread for garbage collection, and other
threads taking care of various other activities related to the Java program.

Figure CC6.1. Multicore Processing Chip
Source: “NVIDIA @16nm @Pascal @GP104 @
GeForce _GTX _1070 @A _TAIWAN _1617A1
_PA3R12 .00P _GP104 – 200 - A1 ___Stack
- DSC02663 - DSC02734 _- _ZS - retouched” by
FritzchensFritz is licensed under CC0 1.0,
https:// www .flickr .com/ photos/ 130561288
@N04/ 29738735845/ in/ photostream/.

CC6.1 Concurrency in Java Using Thread and Runnable Classes • 549

• Single- threaded programming: Creating a program where most of the logic executes in a single process-
ing thread. The operating system determines when this thread gets time on the CPU and if the thread
should be paused and “interrupted” while another thread, possibly with a higher priority, should get CPU
time.

• Multithreaded programming: Creating a program where several logic tasks are executed, each in its own
(two or more) threads. In a Java program, the logic that starts executing in the main() method is usually
considered the “main” thread, whereas other threads created by the developer (user- created threads) are
sometimes called “child” or “worker” threads.

• Parallel programming: A technique where a developer builds software that can specifically take advantage
of multicore CPUs. The software can perform multiple tasks all at the same time by placing those tasks
in multiple threads that are all executed at the same time or concurrently. In this context, some of the
value of the usage of the program specifically comes from the fact that it was developed with the technique
of parallel programming. Its outputs are enhanced by the fact that it executes tasks on multiple threads,
across multiple CPUs, at the same time. Typically the largest “enhancement” is speed.

• Concurrency: An ability present in an application where it can execute multiple tasks at the same time
as implemented through parallel programming techniques.

Figure CC6.2 visualizes what concurrency looks like in a Java application. In figure CC6.2, code in the main
application thread (beginning in the main() method) starts the execution of two other threads. Depending
on the tasks executed, either of the two “child” threads could finish execution first, or the main thread could
while the others wrap up. Java allows you to manage the threads yourself in a more manual way, or it can man-
age the threads for you automatically.

Using the Thread and Runnable classes: Included in the core package (java.lang) of the Java language is
the Runnable interface and the Thread class that implements it. These two classes represent the earliest tools
available in the Java language for developers building multithreaded Java programs. Either class can be used
in the following ways to start creating “child” threads in your application:

• By implementing your own class that extends the Thread class*

• By implementing your own class that implements the Runnable interface†

It is recommended that you implement Runnable in your class. By doing so, a class can additionally inherit
from a parent class if needed while gaining multithreaded task execution capability. The basic steps to creating
child threads in your application using these classes are as follows:
 1. Define an instantiable class that implements the Runnable

interface. Because of the rules of using interface classes in
Java (see companion chapter 3), your class must provide a
concrete definition for the .run() method of the Runnable
interface.

 2. In your main application, create an instance object of your
class that implements Runnable.

 3. In your main application, create an instance object of the
Thread class, and pass a reference to your Runnable-
implementing class object through the constructor.

 4. Invoke the .start() method of the Thread instance object.
This will create a new child thread in your application and
execute the code in the .run() method of your instantiable
Runnable- implementing class within that child thread. This
new thread will run parallel to the main application thread.

* https:// docs .oracle .com/ en/ java/ javase/ 17/ docs/ api/ java .base/ java/ lang/ Thread .html.
† https:// docs .oracle .com/ en/ java/ javase/ 17/ docs/ api/ java .base/ java/ lang/ Runnable .html.

Figure CC6.2. Main Application Thread with Two
Child Threads Executing in Parallel

550 • Companion Chapter 6 / Multithreading and Parallel Programming

First, you can work with and interact with the main application thread itself. All of the Java programming you
have worked with throughout this textbook has been single- threaded: all occurring in the main application
thread. Try the following code in a new Java main() class file on your machine:

Code Snippet CC6.1
// Working with the current "main" thread
// rereference t to current main executing application thread
Thread t = Thread.currentThread();
System.out.println("Current Thread: " + t);

// Change the name of the main executing application thread
t.setName("MainAppThread");
System.out.println("Current Thread: " + t);

// Since a Thread method is called, a try…catch block is needed
try {
 for (int i=0;i<10;i++)
 {
 System.out.println(i);
 Thread.sleep(1000); // main thread sleeps for 1000 ms (1 sec)
 }
}
catch (InterruptedException ex)
{
 System.out.println(ex.toString());
}

When run, this code will produce the following output to the console:
Current Thread: Thread[main,5,main]
Current Thread: Thread[MainAppThread,5,main]
0
1
2
3
4
5
6
7
8
9

In this code, a reference to the current main thread is retrieved by calling the static .currentThread()
method of the Thread class. That reference is stored in the Thread reference variable t. The Thread class
(like most others in Java) implements the .toString() method, and this is what returns the description of
the thread in the first call to .println(). The .setName() method changes the name of the main applica-
tion thread (and you can do so with any future child thread as well). Notice that when the Thread object t is
printed again, the first value has changed to MainAppThread. The next value, “5,” is the priority value assigned
(the “normal” thread priority value) to the main application thread. This helps it interact with the operating
system of your computer in determining when it might be bumped for some other thread with a higher priority
number. Finally, the last value, “main,” is the name of the thread group for this Java application (its process).
Other child threads you might create will be part of the same thread group.

Notice the call to the static Thread method .sleep(). A value in milliseconds is passed to it. Whenever
this method is called within a thread’s code, that thread will pause execution for the time duration indicated
(1,000 milliseconds = 1 second of time). When a thread sleeps, other threads might be allowed to execute
while it pauses (again, the operating system has control of all this!). As this program runs, you will notice that
the printing of numbers 0 to 9 happens slowly: one is printed per second.

CC6.1 Concurrency in Java Using Thread and Runnable Classes • 551

Lastly, notice the use of the try…catch statement. Like file I/O and database activities, use of multi-
threaded classes in Java is typically enclosed in a try…catch. Notice the exception class (see chapter 10
for more on the exception classes) being caught: InterruptedException. The most common issue is
that your thread is abruptly interrupted by an external cause (the operating system), which will throw this
exception.

Creating a single child thread in your application: Following the four- step process listed earlier for work-
ing with Thread and Runnable, you can test the concurrency waters by creating a single child thread that will
run in parallel to the main application thread:

• First, create an instantiable class that implements Runnable. The class will need to provide a concrete
definition for .run(). The code in .run() is the “task” you want to execute in a separate thread that runs
parallel to the main application thread. Duplicate the single- thread task from earlier by printing a count
up to 5. You can create this as a separate .java file or by adding a nested class (see chapter 2):

Code Snippet CC6.2
class CountingClass implements Runnable
{
 @Override
 public void run() // This is the task to run in parallel
 {
 try
 {
 for (int i=0;i<5;i++)
 {
 System.out.println(
 Thread.currentThread().getName() + ": " + i);
 Thread.sleep(500);
 }
 }
 catch (InterruptedException ieex)
 {
 System.out.println(ieex.toString());
 }
 }
}

• Next, back in the main() method of your application, an instance object of this class is needed along with
an instance of Thread with the instance object passed as the constructor’s reference. The same print of a
count up to 5 will be performed in the main thread as well so that the “parallel” aspect of the processing
can be easily seen in the output:

Code Snippet CC6.3
// . . . in main() method application
// Creating a single child thread
CountingClass cc1 = new CountingClass();
Thread cc1Thread = new Thread(cc1); // Pass CountingClass ref
cc1Thread.setName("cc1"); // Set child thread's name

try
{
 cc1Thread.start();
 for (int i=0;i<5;i++)
 {
 System.out.println(
 Thread.currentThread().getName() + " " + i);
 Thread.sleep(750);
 }
}

552 • Companion Chapter 6 / Multithreading and Parallel Programming

catch (InterruptedException ieex)
{
 System.out.println(ieex.toString());
}

Notice that the main thread is set to sleep every 750 milliseconds, whereas the CountingClass will instruct
its thread to sleep every 500 milliseconds. The output for this will look something like the following. (Note:
Your output may look different! The order in which the threads execute on your machine will differ from
the author’s and will differ from run to run on your machine. Remember that the operating system gets to
determine which threads execute when.)
cc1: 0
main 0
cc1: 1
main 1
cc1: 2
cc1: 3
main 2
cc1: 4
main 3
main 4

This code executed again with no changes creates the following output on the author’s machine (with dif-
ferences highlighted in bold):
main 0
cc1: 0
cc1: 1
main 1
cc1: 2
main 2
cc1: 3
cc1: 4
main 3
main 4

Notice the differences between the two runs! The OS is in control when it comes to the final order of execu-
tion of Java threads.

Working with multiple child threads: Using Thread and Runnable, adding more than one child thread is
relatively easy. Consider the following example, which uses the same CountingClass class from earlier. In this
code, the Thread method .join() is invoked (in bold) from the main thread and upon each of the child
threads. This method instructs the main thread to pause and wait for each of the threads that are initiated from
it to finish (or “die,” if you want to get morbid about programming):

Code Snippet CC6.4
// . . . in main()
// Working with multiple child or "worker" threads
try
{
 // Instantiate three CountingClass objects
 CountingClass cc1 = new CountingClass();
 CountingClass cc2 = new CountingClass();
 CountingClass cc3 = new CountingClass();

 // Pass CountingClass object references to new Thread
 // objects, with Thread names
 Thread t1 = new Thread(cc1, "cc1");
 Thread t2 = new Thread(cc2, "cc2");
 Thread t3 = new Thread(cc3, "cc3");

 t1.start();

CC6.1 Concurrency in Java Using Thread and Runnable Classes • 553

 t2.start();
 t3.start();

 System.out.println(Thread.activeCount() + " threads active!");

 t1.join(); // Main Thread will wait until t1 finishes
 t2.join(); // Main Thread will wait until t2 finishes
 t3.join(); // Main Thread will wait until t3 finishes

 System.out.println(Thread.activeCount() + " threads active!");

 for (int i=0; i<5; i++)
 {
 System.out.println("MainThread " + i);
 Thread.sleep(1000);
 }
}
catch (Exception ex)
{
 System.out.println();
}

The console output for this will look similar to the following on your machine (but will differ every time you
run it):
4 threads active!
cc2: 0
cc1: 0
cc3: 0
cc1: 1
cc2: 1
cc3: 1
cc1: 2
cc2: 2
cc3: 2
cc2: 3
cc1: 3
cc3: 3
cc1: 4
cc2: 4
cc3: 4
1 threads active!
MainThread 0
MainThread 1
MainThread 2
MainThread 3
MainThread 4

You can see the behavior caused by invoking .join() in the output: the four child threads execute as they
are able, but the main thread will wait until they are done before executing the for loop that prints the count.
Note the call to the static Thread class method .activeCount(), which lets you see how many threads are
active at any given time in the thread group of the thread from which the method is invoked (in this case, it
is invoked from the main application thread, and the child threads are in the same group). Lastly, notice in
this code that the overloaded version of the Thread constructor is used, passing both the CountingClass
object reference and a String that represents the thread’s name instead of separately calling .setName() on
each Thread instance object.

When threads need to access a shared resource: Oftentimes, multithreaded code running via multiple child
threads will have the need for all threads to access a shared resource: a single variable, a single connection, and
so on. Sometimes unexpected results can occur if synchronization between the threads is not used to ensure

554 • Companion Chapter 6 / Multithreading and Parallel Programming

that each thread “waits its turn” before accessing the shared resource. For example, one thread could read a
value at the same time another thread is writing a value to the same variable. Any logic that depends on that
variable’s value may not operate correctly. Consider the following example, where several child threads need
to access a data field of a “regular” instantiated class. First are the child thread class and the “shared” resource
class (added to the main() method class as nested classes at the end of the code listing):

Code Snippet CC6.5
class ValueClass // Contains the shared resource
{
 int aValue; // The shared resource

 public ValueClass()
 {
 aValue = 0;
 }

 public int getAndIncrement()
 {
 return (++aValue);
 }
}

class AlterValueClass implements Runnable // Child thread class
{
 ValueClass vc;

 public AlterValueClass(ValueClass vc)
 {
 this.vc = vc;
 }

 public void run()
 {
 int currentValue = 0;

 currentValue = vc.getAndIncrement();
 System.out.println(
 Thread.currentThread().getName()
 + ": VC: " + currentValue
);
 }
}

The code in main() that will use these classes:
ValueClass vc = new ValueClass();

AlterValueClass avc1 = new AlterValueClass(vc);
AlterValueClass avc2 = new AlterValueClass(vc);
AlterValueClass avc3 = new AlterValueClass(vc);
AlterValueClass avc4 = new AlterValueClass(vc);
AlterValueClass avc5 = new AlterValueClass(vc);

Thread valueThread1 = new Thread(avc1, "vc1");
Thread valueThread2 = new Thread(avc2, "vc2");
Thread valueThread3 = new Thread(avc2, "vc3");
Thread valueThread4 = new Thread(avc2, "vc4");
Thread valueThread5 = new Thread(avc2, "vc5");

valueThread1.start();

CC6.1 Concurrency in Java Using Thread and Runnable Classes • 555

valueThread2.start();
valueThread3.start();
valueThread4.start();
valueThread5.start();

Five threads are created, with each using AlterValueClass instance objects. Each of those objects is passed
a reference to the single ValueClass object that contains the shared resource. Within the .run() of each
thread, the .getAndIncrement() method of the ValueClass object is called to increment the value of the
ValueClass object’s data field and return that value back for printing to the console. Your output may differ,
but here is what printed during one run on my machine:
vc2: VC: 2
vc4: VC: 4
vc1: VC: 1
vc3: VC: 5
vc5: VC: 3

What is happening here? These threads are all calling .getAndIncrement() at the same time, increasing
the value of the vc object’s data field. Depending on the order the operating system assigns to executing the
threads, each sees a different post- incrementation value when it finishes and prints that, though the value may
already be different! This is too chaotic and unpredictable. The use of the synchronized keyword will resolve
this chaos. You can use it in two ways:

• By adding the keyword synchronized before the return type of the .getAndIncrement() method in
the ValueClass

• By adding a synchronized code block with a monitor object to the .run() method of the threaded class
AlterValueClass

The synchronized keyword ensures that once a particular thread either enters a method or enters a code block
surrounding a call to a shared method or resource, other threads must wait until it is done before they can
enter the same method or access the same shared resource. Change the AlterValueClass thread class in the
following way (using the latter of the two techniques above; changes in bold):

Code Snippet CC6.6
class AlterValueClass implements Runnable // Child thread class
{
 ValueClass vc;

 public AlterValueClass(ValueClass vc)
 {
 this.vc = vc; // Receive Reference to Shared Resource
 }

 public void run()
 {
 int currentValue = 0;

 synchronized(vc) // vc becomes the " "monitor" object
 {
 currentValue = vc.getAndIncrement();
 System.out.println(
 Thread.currentThread().getName()
 + ": VC: " + currentValue
);
 }

 }
}

556 • Companion Chapter 6 / Multithreading and Parallel Programming

Here the synchronized block is used, and the shared instance object vc is specified as the “monitor” object.
This produces a lock on the object that other threads have to wait for the current thread to release by finishing
the synchronized block. The other threads have to “wait their turn,” as it were.

Our output following this change is as follows:
vc1: VC: 1
vc4: VC: 2
vc5: VC: 3
vc3: VC: 4
vc2: VC: 5

Much better! If you run this a few times, you will see that though the order in which the threads execute may
change, the ordering of the value, retrieved from the shared resource, does not. The chaos has been managed,
and each thread sees the incrementing value much more realistically. The use of the synchronized keyword,
though useful, is generally advised against. Debugging any issues with it can be difficult, and the shared resource
synchronization features of the Java concurrency API are much easier to use and considered more sophisticated.

Business example— curbside wait time for restaurant customers: A relevant business example for the use
of the Thread class and Runnable interface would be in assigning customers to curbside pickup locations. In
this example, ordering food to go from a client’s restaurant and having the food brought out to the customers’
vehicles is modeled simply in a Java application. During interviews with the client- owner, they have informed
you that the average wait time at curbside for a customer is about 2.7 minutes. Each customer is considered
to be a “shopper” in the restaurant’s internal documentation. Using the earlier example of multiple threads
accessing a shared resource, you can build this step- by- step:
 1. Create a Shopper class to model each individual customer: For simplicity, each Shopper object

will store only a name and a String order description:

Code Snippet CC6.7
class Shopper
{
 private String name;
 private String order;

 public Shopper(String name, String order)
 {
 this.name = name;
 this.order = order;
 }

 public String getName()
 {
 return this.name;
 }

 @Override
 public String toString()
 {
 return "Shopper Name: " + this.name
 + ",\nOrder:" + this.order;
 }
}

 2. Create a class that will contain the shared resource: In this example, a class is needed that will
centrally manage one array of curbside pickup locations that customers will be sorted into as they
arrive and are served. The following CurbsideManager class will serve this purpose nicely:

CC6.1 Concurrency in Java Using Thread and Runnable Classes • 557

Code Snippet CC6.8
class CurbsideManager
{
 private Shopper[] curbsidePositions; // Shared Resource
 private int nextOpenPosition; // Shared Resource

 public CurbsideManager()
 {
 curbsidePositions = new Shopper[5];
 }

 public int assignShopper(Shopper s)
 {
 // Client has reported about 2.7 minutes average
 // wait time per customer.
 if (nextOpenPosition < curbsidePositions.length)
 {
 curbsidePositions[nextOpenPosition] = s;
 System.out.println("Shopper " + s.getName()
 + " is in position " + (nextOpenPosition + 1)
 + ", wait time: "
 + (int)((nextOpenPosition + 1) * 2.7)
 + " minutes");
 nextOpenPosition++;
 }
 else
 {
 System.out.println("No more open positions!");
 }
 return nextOpenPosition;
 }

 public void serveShopper()
 {
 System.out.println("\n### Serving Customer: "
 + curbsidePositions[0].getName() + "!! ###\n");
 for (int i=1; i < curbsidePositions.length; i++)
 {
 curbsidePositions[i- 1] = curbsidePositions[i];
 }

 curbsidePositions[nextOpenPosition- 1] = null;
 nextOpenPosition- - ;

 for (int i=0; i<nextOpenPosition; i++)
 {
 System.out.println(
"Customer " + curbsidePositions[i].getName()
 + " is now in position " + (i + 1)
 + ", wait time: "
 + (int)((i + 1) * 2.7)
 + " minutes");
 }
 }
}

Notice that the array has a data type of Shopper to store references to Shopper instance objects. Both it and
the int nextOpenPosition will be the two shared resources that will be interacted with from multiple threads
as customers queue up.

558 • Companion Chapter 6 / Multithreading and Parallel Programming

 3. Create a class that will assign customers to open curbside positions: As in the prior example, a class
that implements Runnable is needed, one that provides a concrete implementation to the Runnable
method run(). This method will contain the code that consists of the task you need executed in a
multithreaded manner. The following BuildShopperLine class will provide this functionality:

Code Snippet CC6.9
class BuildShopperLine implements Runnable
{
 CurbsideManager cm;
 Shopper s;

 // Each BuildShopperLine instance object
 // receives a reference to the
 // same, single CurbsideManager instance object from the
 // application but different Shopper objects.

 public BuildShopperLine(CurbsideManager cm, Shopper s)
 {
 this.cm = cm;
 this.s = s;
 }

 // Providing a concrete definition of the
 // run() method of the Runnable class.

 public void run()
 {
 // synchronized block ensures threads wait
 // when trying to access the shared resource
 // of the curbside array in the CurbsideManager
 // class.
 // The CurbsideManager instance object becomes
 // the "monitored" object.

 synchronized(this.cm)
 {
 cm.assignShopper(s);
 }
 }
}

 4. Next, add a similar class to remove a Shopper from the curbside pickup locations: When the
“next” customer is served, they leave the “queue,” and the other customers are bumped up in both
positions and shown new, shorter wait times:

Code Snippet CC6.10
class ServeShopper implements Runnable
{
 CurbsideManager cm;

 public ServeShopper(CurbsideManager cm)
 {
 this.cm = cm;
 }

 // Concrete method implementation of
 // interface Runnable

 public void run()
 {

CC6.1 Concurrency in Java Using Thread and Runnable Classes • 559

 synchronized(cm)
 {
 cm.serveShopper();
 }
 }
}

 5. Finally, create a new Java main() class application that will allow you to test out these classes
and the adding/removing of customers from the curbside pickup locations:

Code Snippet CC6.11
import java.util.*;

public class CC6_CurbsideWaitTime {

 public static void main(String[] args) {
 try
 {
 // There are 5 shoppers who want to queue up for their
 // orders at curbside. They have all arrived
 // at the same time.

 // Use multithreading to assign them to their positions

 // Create the five shoppers
 Shopper s1 =
 new Shopper("Julie", "Vegetarian Salad, Carrot Juice");
 Shopper s2 =
 new Shopper("Monique", "Soup of the Day, Soft Drink");
 Shopper s3 =
 new Shopper("Gari", "Chicken Fresca, Coffee- Iced- Large");
 Shopper s4 =
 new Shopper("Mark", "Soup of the Day, Bobble Tea");
 Shopper s5 =
 new Shopper("Mari", "Vegetarian Salad, Orange Juice");

 // Create a CurbsideManager class object
 CurbsideManager cm = new CurbsideManager();

 // Create BuildShopperLine instance objects that
 // will execute simultaneously.
 BuildShopperLine bs1 = new BuildShopperLine(cm, s1);
 BuildShopperLine bs2 = new BuildShopperLine(cm, s2);
 BuildShopperLine bs3 = new BuildShopperLine(cm, s3);
 BuildShopperLine bs4 = new BuildShopperLine(cm, s4);
 BuildShopperLine bs5 = new BuildShopperLine(cm, s5);

 // Build the Thread instance objects
 Thread t1 = new Thread(bs1);
 Thread t2 = new Thread(bs2);
 Thread t3 = new Thread(bs3);
 Thread t4 = new Thread(bs4);
 Thread t5 = new Thread(bs5);

 // Kick off execution of the threads, which
 // calls the run() method of
 // each BuildShopperLine object.
 t1.start();
 t2.start();

560 • Companion Chapter 6 / Multithreading and Parallel Programming

 t3.start();
 t4.start();
 t5.start();

 // Instruct the main application thread to wait
 // until all threads have finished, assigning
 // shoppers to curbside positions.
 t1.join();
 t2.join();
 t3.join();
 t4.join();
 t5.join();

 // Serve two customers and update the
 // others as to their positions:

 ServeShopper ssh1 = new ServeShopper(cm);
 ServeShopper ssh2 = new ServeShopper(cm);

 // "Shortcut" style Thread instantiation
 // and invoking .start() upon each of them.
 (new Thread(ssh1)).start();
 (new Thread(ssh2)).start();

 }
 catch (Exception ex)
 {
 System.out.println(ex.toString());
 }

 } // End of main()
} // End of the application class CC6_CurbsideWaitTime

Because this is a multithreaded application, the output when run on your machine may look different from the
output printed here. When run on the author’s machine, the application prints the following:
Shopper Julie is in position 1, wait time: 2 minutes
Shopper Mari is in position 2, wait time: 5 minutes
Shopper Mark is in position 3, wait time: 8 minutes
Shopper Gari is in position 4, wait time: 10 minutes
Shopper Monique is in position 5, wait time: 13 minutes

Serving Customer: Julie!!

Customer Mari is now in position 1, wait time: 2 minutes
Customer Mark is now in position 2, wait time: 5 minutes
Customer Gari is now in position 3, wait time: 8 minutes
Customer Monique is now in position 4, wait time: 10 minutes

Serving Customer: Mari!!

Customer Mark is now in position 1, wait time: 2 minutes
Customer Gari is now in position 2, wait time: 5 minutes
Customer Monique is now in position 3, wait time: 8 minutes

Since all five customers arrived at the curbside pickup location at the same time, their order depends on how
the operating system processes and manages the threads kicked off by the application. For example, the shop-
per “Mari” had her instance object created last, but she was awarded the second curbside pickup location.
Customers “Julie” and “Mari” are then served, and both the positions and the wait times for the remaining cus-
tomers are updated and printed.

CC6.2 Exploring the Concurrency API in Java • 561

SUMMARY POINTS

* https:// docs .oracle .com/ javase/ 7/ docs/ api/ java/ util/ concurrent/ package -summary .html.

• Multithreaded programming allows developers
to create software that can take effective
advantage of both multiple CPU systems and
multicore CPU systems on a variety of devices.

• A thread is the smallest unit of processing that
can	be	performed	by	a	CPU,	containing	a	task	to	
be executed.

• A process is typically where a Java application
runs	with	multiple	threads—	some	used	by	the	
JVM and at least one application thread where
the main() method executes.

• Parallel programming is an approach to software
development where the development efforts
are	specifically	geared	toward	enhancing	value	
through enabling concurrency in the application
developed.

• The Thread class allows the developer to kick
off a new child thread that runs parallel to the
main application thread.

• The Runnable interface can be implemented in
a	user-	defined	class.	Objects	of	that	class	can	
represent a task to be executed in parallel.

• It is recommended that developers use both
Runnable and Thread instead of simply extending
Thread in their classes.

• The .currentThread()	method,	when	called	
on the Thread	class	by	code,	will	get	a	reference	
to the thread that that code is currently executing
within,	whether	it	is	in	the	main	application	
thread or in a child thread.

• The .join() method of the Thread class will
force the thread within which it is called to pause
and wait until any child Thread objects it is
invoked	upon	have	finished	execution.

• Synchronization is a concept of carefully
managing the access to a single application
resource from multiple executing child threads.

• The keyword synchronized can be applied
either	as	a	modifier	to	a	method	header	or	as	
a	block	header,	where	the	object	upon	which	
simultaneous access will be carefully managed
is used as a “monitor” object in the synchronized
block.

QUICK PROBLEMS

 1. Coding: Write a small program that prompts the
user	to	enter	their	first	name.	For	each	letter	in	
the	name,	pass	that	letter	to	a	child	thread	that	
will print that letter.

 2. Think:	In	quick	problem	#1	above,	did	the	letters	
print	out	in	the	proper	order?	If	not,	why	not?

 3. Coding: Write a small program that will add
either a “1” or a “0” to a shared resource class’s
ArrayList<Integer> object. Each child thread will
loop twenty times. If the most recent value was a
“1,”	add	a	“0,”	and	vice	versa.	Have	the	main	appli-
cation thread print the contents of the array to the
console when the threads have been completed.

CC6.2 Exploring the Concurrency API in Java
The Thread and Runnable classes explored earlier in this chapter have been a part of the core Java lan-
guage since JDK 1. As of JDK 7, the ability of the Java language to handle multithreaded programming in
a sophisticated manner has been vastly expanded and updated with the inclusion of the concurrency API,
located in the java.util.concurrency package.* Within the package are a large number of “utility” classes
that are useful for many different concurrency scenarios developers may face. A thorough tour of these is
beyond the scope of this chapter, but some of the notable groups of interfaces and classes to be aware of
are the following:

• Classes that implement thread- safe versions of the Collections classes (see companion chapter 5),
like ConcurrentHashMap<K,V>, ConcurrentLinkedQueue<E>, and ConcurrentMap<K,V>, among
others

562 • Companion Chapter 6 / Multithreading and Parallel Programming

• Classes that implement synchronized versions of primitive data
types (located in package java.util.concurrent.atomic), like
AtomicInteger, AtomicLong, and AtomicBoolean*

• Classes that can assist the developer in having threads perform com-
putations and return values from those threads to the main thread, like
Callable<V> and Future<V>

• Classes that can help make single and multiple thread execution much
simpler, like Executor, ExecutorService, and Executors

• Classes that can fully manage scaling both threads and usage of mul-
tiprocessor systems as the application demands more parallel resources
during a recursive (see companion chapter 3) computational task, like
ForkJoinPool, ForkJoinTask<V>, and RecursiveAction

In the rest of this section, some business- related and other practical examples
that make use of several of these classes will be covered to show enhanced and
sophisticated multithreaded application development in Java.

Usage of the ExecutorService class: Earlier in the chapter, Thread objects
were created as well as instances of user- defined classes that implement
Runnable. You had to start the threads and the executed task within each manually. Alternatively, the use of
the ExecutorService interface class makes kicking off threads and their management much easier.† Since
ExecutorService is an interface, the Executors class has several “factory” methods that will create an instance
object of ExecutorService for us, an instance that can manage a “pool” of threads automatically.‡ Some of
the more common methods of the Executors class are as follows:

• .newFixedThreadPool(int numOfThreads): Creates and returns a reference to an ExecutorService
instance object that can manage a pool of up to numOfThreads execution threads. Since the number is
fixed, threads are reused as tasks finish.

• .newCachedThreadPool(): Creates and returns a reference to an ExecutorService instance object that
manages a pool of threads that expands as needed. This ExecutorService object will attempt to reuse
those threads when possible due to the overhead of creating new ones.

• .newSingleThreadExecutor(): Creates an ExecutorService object that uses a single Thread for task
execution. Most documentations recommend the use of this method over manual creation of a single
Thread as seen earlier in this chapter due to the efficiency of the ExecutorService.

If you recall from earlier in the chapter, a class called CountingClass was defined that implements the Runnable
interface (you can create this new class in a separate .java file or by adding it to the very end of the class in
which your main() method is found, a “nested” class):

Code Snippet CC6.12
class CountingClass implements Runnable
{
 @Override
 public void run()
 {
 try
 {
 for (int i=0;i<5;i++)
 {
 System.out.println(
 Thread.currentThread().getName() + ": " + i);

* https:// docs .oracle .com/ en/ java/ javase/ 17/ docs/ api/ java .base/ java/ util/ concurrent/ atomic/ package -summary .html.
† https:// docs .oracle .com/ en/ java/ javase/ 17/ docs/ api/ java .base/ java/ util/ concurrent/ ExecutorService .html.
‡ https:// docs .oracle .com/ en/ java/ javase/ 17/ docs/ api/ java .base/ java/ util/ concurrent/ Executors .html.

Figure CC6.3. Cabbages in a Grocery
Store—	a	Popular	Choice	among	
Shoppers

Source: “File:Cabbage in a stack.jpg” by
Jeffery Martin is licensed under CC0 1.0,
https:// commons .wikimedia .org/ w/ index
.php ?curid = 61659596.

CC6.2 Exploring the Concurrency API in Java • 563

 Thread.sleep(500);
 }
 }
 catch (InterruptedException ieex)
 {
 System.out.println(ieex.toString());
 }
 }
}

You can re- create the earlier multiple- threaded example by using an ExecutorService to execute the threads
that run the CountingClass tasks. First, add the following import to the top of your Java class:

Code Snippet CC6.13
import java.util.concurrent.*;

Next, this code is added to the main() method:

Code Snippet CC6.14
// Simple Executor Service Usage
ExecutorService excSrv = Executors.newFixedThreadPool(3);
try
{
 excSrv.execute(new CountingClass());
 excSrv.execute(new CountingClass());
 excSrv.execute(new CountingClass());

 for (int i=0; i<5; i++)
 {
 System.out.println("MainThread " + i);
 Thread.sleep(1000);
 }

}
catch (InterruptedException ieex)
{
 System.out.println(ieex.toString());
}
finally
{
 excSrv.shutdown();
}

When this code runs in main(), three new CountingClass objects are created in- line in the invocation to the
.execute() method, which performs the counting task at some point in the future (you cannot predict when
due to operating system thread scheduling). Since the ExecutorService manages the creation of threads for
us, the task may run in a new thread (one of the upper limits of the three specified), or it may run in a reused
thread. Because the ExecutorService is managing thread creation and usage in a highly efficient manner, the
three invocations to .execute() are the same when using a fixed, scalable, or single- thread executor thread
pool. You can specify which tasks you want to execute in parallel, and ExecutorService will handle the rest.

This code that leverages ExecutorService produces the following output on the console when it runs (again,
your output may differ slightly due to your operating system’s scheduling of the threads):
MainThread 0
pool- 1- thread- 3: 0
pool- 1- thread- 1: 0
pool- 1- thread- 2: 0

. . . Some Output Omitted for Brevity by Author

pool- 1- thread- 2: 4

564 • Companion Chapter 6 / Multithreading and Parallel Programming

pool- 1- thread- 3: 4
MainThread 2
pool- 1- thread- 1: 4
MainThread 3
MainThread 4

Notice the finally added to the try…catch block. It is critical that you call .shutdown() when you are
sure that no more child threads will be needed; otherwise, the ExecutorService would halt the entire program,
waiting for more thread- based tasks to be executed through it. The .shutdown() method prevents new threads
from executing but allows the ones currently running to finish naturally. The method .shutdownNow() is more
abrupt, attempting to shut down any actively running tasks immediately. Code in the finally statement will
be executed no matter what happens when the code in try is completed or the caught Exception has been
processed.

Summary
In	this	chapter,	you	have	both	explored	the	basics	
of multithreaded programming as found in the
core	 of	 the	 Java	 language	 and	 briefly	 toured	
some of the classes of the Java concurrency API.
Issues that impact parallel programming certainly
stretch beyond those discussed in this chapter
(synchronization and computation in threads). As
an	information	systems	professional,	you	will	cer-
tainly encounter development and implementation

scenarios where concurrency can improve both
efficiency	and	the	user	experience.	Understanding	
some of the basics of parallel programming and
how these work in the Java language is a must
for the contemporary IS professional. Though
many of the topics discussed above are beyond the
scope	of	this	chapter,	you	should	certainly	research	
and understand them on your own to enhance your
development capabilities.

Practice Problems
Terminology
Match	the	following	terms	from	the	chapter	with	their	most	appropriate	definition:

 1. Multithreaded
programming

 a. Where threads are abruptly halted to allow other, higher- priority threads to run due to the operating
system’s control over thread execution.

 2. Process b. Java interface class that user- defined classes can implement, allowing their tasks to be run in
parallel.

 3. Thread c. Software development approach where all logic tasks in an application are processed by the CPU in
sequence, one after the other, with no parallel execution.

 4. Single- threaded
programming

 d. In multithreaded application processes, this approach keeps access to a shared resource by multiple
threads reasonably managed, reducing any thread conflicts.

 5. Parallel programming e. A variable, connection, or other resource for which access might be attempted by logic running in
parallel in multiple threads.

 6. Main application
thread

 f. Java class in the concurrency API that manages the details of kicking off, executing, and ending
threads on behalf of the developer, enhancing multithreaded programming efforts.

 7. Interrupt g. Thread- safe versions of some of the primitive data types in Java, allowing them to serve as a shared
resource in a multithreaded application.

 8. Runnable h. Method of the ExecutorService class that starts execution of a thread for a task whose class has
implemented the Runnable interface.

 9. .start() i. Java interface class that allows a task to be run in parallel and to have its logic return back a value
to the main application thread or other threads.

CC6.2 Exploring the Concurrency API in Java • 565

 10. .run() j. The memory and resources surrounding the run of a Java program. Could contain one or more
threads where related tasks run.

 11. Child thread k. Java class that allows the developer to fine- tune thread access to a shared resource, reducing or
eliminating thread conflicts.

 12. try…catch l. Method of the Runnable interface, concretely implemented in a user- defined class, that contains the
logic for the task to be executed in parallel.

 13. .join() m. Method of the ExecutorService class that prevents any new threads from being started through it
and allows existing threads to finish.

 14. Synchronization n. Development approach where software is built with the ability to process multiple tasks at the same
time using multicore computing systems.

 15. Atomics o. A group of threads, created and managed by an ExecutorService object.

 16. Concurrency API p. Method of the Thread class that kicks off the execution of a class object’s task in a separate,
parallel thread.

 17. Callable<V> q. Development approach where software is developed and fine- tuned to specifically take advantage of
multicore processing and where a primary source of value for the software comes from its ability to
concurrently execute tasks.

 18. Future<V> r. In a Java application, the main thread of execution, usually kicked off with the call to main().

 19. ExecutorService s. Method of the Thread class that instructs the main application thread to pause while any child
threads initiated from within it execute and to wait for their completion.

 20. Thread pool t. Java class whose instance objects contain information on both the state of a running thread and any
data/results returned by a task executing in parallel in that thread.

 21. .execute() u. The smallest “unit” of execution containing a task for the CPU to process.

 22. .shutdown() v. Java syntax that allows for the handling of errors that may occur with blocks of “risky” code,
including those involving concurrency.

 23. Shared resource w. Library of contemporary Java classes that gives the developer more advanced tools for building
multithreaded applications in a more sophisticated, less complicated way.

 24. Lock x. Typical name along with “worker thread” given to additional threads running in parallel with the main
application thread.

Find the Error
In	each	of	the	following	problems,	carefully	examine	
the	code	given,	and	determine	the	error(s)/issue(s)	
with	each.	Keep	in	mind,	the	error(s)	could	be	syntax	
(code) or logic (intended outcome) based or both!

Note:	For	some	problems,	if	a	class	other	than	the	
main() class is referenced but its code is not listed in

the problem,	assume	the	code	exists	and	functions.	
Otherwise,	code	for	additional	classes	will	be	listed	
with	the	problem	for	consideration.	Also,	assume	any	
needed import statements are in place.

 1.

public class SleepDemo {
 public static void main(String[] args) {
 for (int i=0;i<5;i++)
 {
 (new Thread(new GoToSleep())).start();
 }
 }
}

class GoToSleep

566 • Companion Chapter 6 / Multithreading and Parallel Programming

{
 public void start()
 {
 try {
 System.out.println(
 "Thread: "
 + Thread.getName()
 + " sleeping");

 Thread.sleep((long)(Math.random() * 10000));

 System.out.println(
 "Thread: "
 + Thread.getName()
 + " waking!");

 } catch (Exception e) {
 System.out.println(e.join());
 }
 }
}

 2.

 Thread newThread = new Thread();
 TaskClass newTask1 = new TaskClass();
 TaskClass newTask2 = new TaskClass();
 TaskClass newTask3 = new TaskClass();

 newThread.setTask(newTask1).start();
 newThread.setTask(newTask2).start();
 newThread.setTask(newTask3).start();

 3.

 TaskClass newTask1 = new TaskClass();
 Thread thread1 = new Thread(newTask1);
 thread1.start();
 thread1.join();

 TaskClass newTask2 = new TaskClass();
 Thread thread1 = new Thread(newTask1);
 thread2.start();
 thread2.join();

 TaskClass newTask3 = new TaskClass();
 Thread thread1 = new Thread(newTask1);
 thread3.start();
 thread3.join();

 4.

ExecutorService threadService =
 Executors.newSingleThreadExecutor();

threadService.execute(new TaskClass());
threadService.await(1);
threadService.execute(new TaskClass());
threadService.await(1);
threadService.execute(new TaskClass());
threadService.await(1);

CC6.2 Exploring the Concurrency API in Java • 567

 5.

public class MainThreadClass {
 public static void main(String[] args) {

 ExecutorService threadService =
 Executors.newCachedThreadPool(10);

 threadService.submit(new IncrementingClass()).join();
 threadService.submit(new IncrementingClass()).join();
 }
}

class SharedValue implements Runnable{
 static AtomicInteger counterValue = 0;
}

class IncrementingClass
{
 public void run()
 {
 SharedValue.counterValue++;
 }
}

Think about It
	 1.	 What	 are	 some	 benefits	 yielded	 from	 software	

development targeted at multiprocessor systems?
 2. What are some practical applications for parallel

programming in modern applications?
 3. What is the difference between a thread and a

process?
	 4.	 What	is	the	“main	application	thread,”	and	how	does	

it differ from other created threads?
 5. What is the primary manager of thread execution

within computer systems?
 6. When running child threads in parallel with a

main	application	thread,	what	determines	when	
the	threads	finish	execution?

 7. What are the two classes that enable basic multi-
threaded programming in the core Java language?
What are the main differences between the two?

	 8.	 How	can	code	within	a	thread	interact	with	the	thread	
in which it runs? What properties of the current
thread are retrievable and which can be changed?

	 9.	 How	do	you	correctly	use	the	.sleep() method?
 10. Why do blocks of multithreaded code typically need

to be enclosed in a try…catch block?

	 11.	 How	 is	 the	Runnable interface used in a multi-
threaded application? What are some required
steps to use it?

 12. What does the .join()	method	do?	How	is	it	prop-
erly used?

 13. Describe the concept of synchronization. Why is it
necessary in a multithreaded application?

	 14.	 How	does	the	concurrency	API	differ	from	the	basic	
Java multithreading classes?

	 15.	 What	is	a	benefit	of	using	an	ExecutorService for
parallel programming?

 16. What is a thread pool? What are the various types
that can be used with an ExecutorService?

	 17.	 How	 can	 a	 developer	 use	 threads	 to	 compute	
values and return those threads back to the main
application thread?

 18. What is the difference between the .execute()
method and the .submit() service in the
ExecutorService class?

 19. What is the purpose of the Lock class and its related
classes? What is the primary thing to remember to
make the Lock class useful in your multithreaded
application?

568 • Companion Chapter 6 / Multithreading and Parallel Programming

Full Problems
 1. Write a multithreaded Java program that will

produce seven lottery numbers. Use the Thread
and Runnable classes. Create a class called
GenerateNumber that implements Runnable. For the
.run()	method,	have	it	generate	one	lottery	number	
randomly,	between	and	inclusive	of	the	values	one	
and	seventy.	In	your	main	application,	create	seven	
Thread	objects,	and	have	each	one	execute.	Print	
the numbers to the console.

 2. Create a second version of the multithreaded full
problem	#1,	but	use	the	Callable<V>	and	Future<V>	
classes	instead.	Have	each	thread	generate	the	lot-
tery	number,	and	return	that	result	to	the	main	appli-
cation thread. Print the numbers to the console.

 3. Implement a multithreaded Java application that
will	perform	the	following	tasks:

 i. The application will prompt for the user to enter
a paragraph of text.

	 ii.	 Once	the	user	presses	the	Enter	key,	the	appli-
cation will capture the paragraph in a String
variable.

 iii. The application will extract each individual word
from the paragraph and add each word to an
ArrayList<String> object.

	 iv.	 Working	 with	 up	 to	 ten	 words	 at	 a	 time,	 the	
application will submit each word to a child
thread where the total quantity of vowels will
be counted in the word. Return these counts
back to the main application thread.

 v. As each of the vowel quantity counts are
returned,	 the	 application	 will	 sum	 them	 in	 a	
variable,	and	submit	the	next	ten	words	from	
the paragraph and so on until all words have
been processed in a parallel manner.

 vi. The application will report the total quantity of
vowels to the console.

 4. Use class Fibonacci (which implements
Callable<V>)	from	companion	chapter 3.	Imple-
ment a multithreaded application that will pres-
ent the user with a looping option. The user can
enter a number from one to sixty. For the number
the	user	enters,	kick	off	a	child	thread	that	will	
use the Fibonacci class to calculate the number
entered	while	taking	the	user	back	to	the	prompt,	
where they can enter a second number. As each
number	is	calculated,	print	it	to	the	console.	Modify	
the Fibonacci class if needed.

 5. Write a multithreaded Java application that will
generate one hundred int	values	randomly,	with	
values between 1 and 150. Using child threads and
a	divide-	and-	conquer	method,	add	up	all	the	num-
bers	in	the	array	by	dividing	the	array	in	half,	and	
send each half into a thread task. Continue doing
so until each thread only receives an array of size
2. Print the sum of the array to the console in the
main application thread.

	cc6

